Meta-neural-network for real-time and passive deep-learning-based object recognition
The authors present a passive meta-neural-network for real-time recognition of objects by analysis of acoustic scattering. It consists of unit cells termed meta-neurons, mimicking an analogous neural network for classical waves, and is shown to recognise handwritten digits and misaligned orbital-ang...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b152561300274e6da7804a83cb216ab4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The authors present a passive meta-neural-network for real-time recognition of objects by analysis of acoustic scattering. It consists of unit cells termed meta-neurons, mimicking an analogous neural network for classical waves, and is shown to recognise handwritten digits and misaligned orbital-angular-momentum vortices. |
---|