Meta-neural-network for real-time and passive deep-learning-based object recognition

The authors present a passive meta-neural-network for real-time recognition of objects by analysis of acoustic scattering. It consists of unit cells termed meta-neurons, mimicking an analogous neural network for classical waves, and is shown to recognise handwritten digits and misaligned orbital-ang...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jingkai Weng, Yujiang Ding, Chengbo Hu, Xue-Feng Zhu, Bin Liang, Jing Yang, Jianchun Cheng
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/b152561300274e6da7804a83cb216ab4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The authors present a passive meta-neural-network for real-time recognition of objects by analysis of acoustic scattering. It consists of unit cells termed meta-neurons, mimicking an analogous neural network for classical waves, and is shown to recognise handwritten digits and misaligned orbital-angular-momentum vortices.