Meta-neural-network for real-time and passive deep-learning-based object recognition

The authors present a passive meta-neural-network for real-time recognition of objects by analysis of acoustic scattering. It consists of unit cells termed meta-neurons, mimicking an analogous neural network for classical waves, and is shown to recognise handwritten digits and misaligned orbital-ang...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jingkai Weng, Yujiang Ding, Chengbo Hu, Xue-Feng Zhu, Bin Liang, Jing Yang, Jianchun Cheng
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/b152561300274e6da7804a83cb216ab4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b152561300274e6da7804a83cb216ab4
record_format dspace
spelling oai:doaj.org-article:b152561300274e6da7804a83cb216ab42021-12-02T13:27:23ZMeta-neural-network for real-time and passive deep-learning-based object recognition10.1038/s41467-020-19693-x2041-1723https://doaj.org/article/b152561300274e6da7804a83cb216ab42020-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19693-xhttps://doaj.org/toc/2041-1723The authors present a passive meta-neural-network for real-time recognition of objects by analysis of acoustic scattering. It consists of unit cells termed meta-neurons, mimicking an analogous neural network for classical waves, and is shown to recognise handwritten digits and misaligned orbital-angular-momentum vortices.Jingkai WengYujiang DingChengbo HuXue-Feng ZhuBin LiangJing YangJianchun ChengNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-8 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jingkai Weng
Yujiang Ding
Chengbo Hu
Xue-Feng Zhu
Bin Liang
Jing Yang
Jianchun Cheng
Meta-neural-network for real-time and passive deep-learning-based object recognition
description The authors present a passive meta-neural-network for real-time recognition of objects by analysis of acoustic scattering. It consists of unit cells termed meta-neurons, mimicking an analogous neural network for classical waves, and is shown to recognise handwritten digits and misaligned orbital-angular-momentum vortices.
format article
author Jingkai Weng
Yujiang Ding
Chengbo Hu
Xue-Feng Zhu
Bin Liang
Jing Yang
Jianchun Cheng
author_facet Jingkai Weng
Yujiang Ding
Chengbo Hu
Xue-Feng Zhu
Bin Liang
Jing Yang
Jianchun Cheng
author_sort Jingkai Weng
title Meta-neural-network for real-time and passive deep-learning-based object recognition
title_short Meta-neural-network for real-time and passive deep-learning-based object recognition
title_full Meta-neural-network for real-time and passive deep-learning-based object recognition
title_fullStr Meta-neural-network for real-time and passive deep-learning-based object recognition
title_full_unstemmed Meta-neural-network for real-time and passive deep-learning-based object recognition
title_sort meta-neural-network for real-time and passive deep-learning-based object recognition
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/b152561300274e6da7804a83cb216ab4
work_keys_str_mv AT jingkaiweng metaneuralnetworkforrealtimeandpassivedeeplearningbasedobjectrecognition
AT yujiangding metaneuralnetworkforrealtimeandpassivedeeplearningbasedobjectrecognition
AT chengbohu metaneuralnetworkforrealtimeandpassivedeeplearningbasedobjectrecognition
AT xuefengzhu metaneuralnetworkforrealtimeandpassivedeeplearningbasedobjectrecognition
AT binliang metaneuralnetworkforrealtimeandpassivedeeplearningbasedobjectrecognition
AT jingyang metaneuralnetworkforrealtimeandpassivedeeplearningbasedobjectrecognition
AT jianchuncheng metaneuralnetworkforrealtimeandpassivedeeplearningbasedobjectrecognition
_version_ 1718392995644964864