Meta-neural-network for real-time and passive deep-learning-based object recognition
The authors present a passive meta-neural-network for real-time recognition of objects by analysis of acoustic scattering. It consists of unit cells termed meta-neurons, mimicking an analogous neural network for classical waves, and is shown to recognise handwritten digits and misaligned orbital-ang...
Guardado en:
Autores principales: | Jingkai Weng, Yujiang Ding, Chengbo Hu, Xue-Feng Zhu, Bin Liang, Jing Yang, Jianchun Cheng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b152561300274e6da7804a83cb216ab4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spontaneous representation of numerosity zero in a deep neural network for visual object recognition
por: Khaled Nasr, et al.
Publicado: (2021) -
Improvement of the model of object recognition in aero photographs using deep convolutional neural networks
por: Vadym Slyusar, et al.
Publicado: (2021) -
LPNet: Retina Inspired Neural Network for Object Detection and Recognition
por: Jie Cao, et al.
Publicado: (2021) -
Accurate but fragile passive non-line-of-sight recognition
por: Yangyang Wang, et al.
Publicado: (2021) -
Direction of arrival estimation in passive radar based on deep neural network
por: Xiaoyong Lyu, et al.
Publicado: (2021)