Automatic subject-specific spatiotemporal feature selection for subject-independent affective BCI.
The dimensionality of the spatially distributed channels and the temporal resolution of electroencephalogram (EEG) based brain-computer interfaces (BCI) undermine emotion recognition models. Thus, prior to modeling such data, as the final stage of the learning pipeline, adequate preprocessing, trans...
Guardado en:
Autores principales: | Badar Almarri, Sanguthevar Rajasekaran, Chun-Hsi Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b153b040d3fa4a59a4b8f128d6a55bd8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Manifold Feature Fusion with Dynamical Feature Selection for Cross-Subject Emotion Recognition
por: Yue Hua, et al.
Publicado: (2021) -
A dynamic selection method for reference electrode in SSVEP-based BCI.
por: Zhenghua Wu, et al.
Publicado: (2014) -
Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: a preliminary study
por: Xin Hong, et al.
Publicado: (2017) -
A robust and stable gene selection algorithm based on graph theory and machine learning
por: Subrata Saha, et al.
Publicado: (2021) -
AHMET BÜKE’S NARRATION AND SUBJECT SELECTION IN HIS STORIES
por: Firdevs Canbaz YUMUŞAK
Publicado: (2019)