PM<sub>2.5</sub> Concentration Prediction Based on Spatiotemporal Feature Selection Using XGBoost-MSCNN-GA-LSTM
With the rapid development of China’s industrialization, air pollution is becoming more and more serious. Predicting air quality is essential for identifying further preventive measures to avoid negative impacts. The existing prediction of atmospheric pollutant concentration ignores the problem of f...
Enregistré dans:
Auteurs principaux: | Hongbin Dai, Guangqiu Huang, Huibin Zeng, Fan Yang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b15a4deb69f54444b9e485ea191ca55d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Bagging-gradient boosting decision tree based milling cutter wear status prediction modelling
par: Weiping Xu, et autres
Publié: (2021) -
Hierarchical Spatiotemporal Electroencephalogram Feature Learning and Emotion Recognition With Attention-Based Antagonism Neural Network
par: Pengwei Zhang, et autres
Publié: (2021) -
A Data-Driven Method for Power System Transient Instability Mode Identification Based on Knowledge Discovery and XGBoost Algorithm
par: Neng Zhang, et autres
Publié: (2021) -
Research on LSTM+Attention Model of Infant Cry Classification
par: Tianye Jian, et autres
Publié: (2021) -
Redundancy Is Not Necessarily Detrimental in Classification Problems
par: Sebastián Alberto Grillo, et autres
Publié: (2021)