Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: an in vitro assessment
Amr Alaarg,1,2 Nan Yeun Jordan,1 Johan JF Verhoef,1 Josbert M Metselaar,2,3 Gert Storm,1,2 Robbert J Kok1 1Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 2Department of Biomaterials Science and Technology, Institute for Biomedical Technology...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b15d774cf888422981367685c90fbb00 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b15d774cf888422981367685c90fbb00 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b15d774cf888422981367685c90fbb002021-12-02T07:36:53ZDocosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: an in vitro assessment1178-2013https://doaj.org/article/b15d774cf888422981367685c90fbb002016-10-01T00:00:00Zhttps://www.dovepress.com/docosahexaenoic-acid-liposomes-for-targeting-chronic-inflammatory-dise-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Amr Alaarg,1,2 Nan Yeun Jordan,1 Johan JF Verhoef,1 Josbert M Metselaar,2,3 Gert Storm,1,2 Robbert J Kok1 1Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 2Department of Biomaterials Science and Technology, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, the Netherlands; 3Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany Abstract: Inflammation, oxidative stress, and uncontrolled cell proliferation are common key features of chronic inflammatory diseases, such as atherosclerosis and cancer. ω3 polyunsaturated fatty acids (PUFAs; also known as omega3 fatty acids or fish oil) have beneficial effects against inflammation upon dietary consumption. However, these effects cannot be fully exploited unless diets are enriched with high concentrations of fish oil supplements over long periods of time. Here, a nanomedicine-based approach is presented for delivering effective levels of PUFAs to inflammatory cells. Nanoparticles are internalized by immune cells, and hence can adequately deliver bioactive lipids into these target cells. The ω3 FA docosahexaenoic acid was formulated into liposomes (ω-liposomes), and evaluated for anti-inflammatory effects in different types of immune cells. ω-Liposomes strongly inhibited the release of reactive oxygen species and reactive nitrogen species from human neutrophils and murine macrophages, and also inhibited the production of the proinflammatory cytokines TNFα and MCP1. Moreover, ω-liposomes inhibited tumor-cell proliferation when evaluated in FaDu head and neck squamous carcinoma and 4T1 breast cancer cells in in vitro cultures. We propose that ω-liposomes are a promising nanonutraceutical formulation for intravenous delivery of fish oil FAs, which may be beneficial in the treatment of inflammatory disorders and cancer. Keywords: nanomedicine, PUFA, inflammation, cancer, fish oil, deliveryAlaarg AJordan NYVerhoef JJFMetselaar JMStorm GKok RJDove Medical PressarticleNanomedicineLiposomesDocosahexanoic acidPUFAInflammationCancerMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 11, Pp 5027-5040 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Nanomedicine Liposomes Docosahexanoic acid PUFA Inflammation Cancer Medicine (General) R5-920 |
spellingShingle |
Nanomedicine Liposomes Docosahexanoic acid PUFA Inflammation Cancer Medicine (General) R5-920 Alaarg A Jordan NY Verhoef JJF Metselaar JM Storm G Kok RJ Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: an in vitro assessment |
description |
Amr Alaarg,1,2 Nan Yeun Jordan,1 Johan JF Verhoef,1 Josbert M Metselaar,2,3 Gert Storm,1,2 Robbert J Kok1 1Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 2Department of Biomaterials Science and Technology, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, the Netherlands; 3Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany Abstract: Inflammation, oxidative stress, and uncontrolled cell proliferation are common key features of chronic inflammatory diseases, such as atherosclerosis and cancer. ω3 polyunsaturated fatty acids (PUFAs; also known as omega3 fatty acids or fish oil) have beneficial effects against inflammation upon dietary consumption. However, these effects cannot be fully exploited unless diets are enriched with high concentrations of fish oil supplements over long periods of time. Here, a nanomedicine-based approach is presented for delivering effective levels of PUFAs to inflammatory cells. Nanoparticles are internalized by immune cells, and hence can adequately deliver bioactive lipids into these target cells. The ω3 FA docosahexaenoic acid was formulated into liposomes (ω-liposomes), and evaluated for anti-inflammatory effects in different types of immune cells. ω-Liposomes strongly inhibited the release of reactive oxygen species and reactive nitrogen species from human neutrophils and murine macrophages, and also inhibited the production of the proinflammatory cytokines TNFα and MCP1. Moreover, ω-liposomes inhibited tumor-cell proliferation when evaluated in FaDu head and neck squamous carcinoma and 4T1 breast cancer cells in in vitro cultures. We propose that ω-liposomes are a promising nanonutraceutical formulation for intravenous delivery of fish oil FAs, which may be beneficial in the treatment of inflammatory disorders and cancer. Keywords: nanomedicine, PUFA, inflammation, cancer, fish oil, delivery |
format |
article |
author |
Alaarg A Jordan NY Verhoef JJF Metselaar JM Storm G Kok RJ |
author_facet |
Alaarg A Jordan NY Verhoef JJF Metselaar JM Storm G Kok RJ |
author_sort |
Alaarg A |
title |
Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: an in vitro assessment |
title_short |
Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: an in vitro assessment |
title_full |
Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: an in vitro assessment |
title_fullStr |
Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: an in vitro assessment |
title_full_unstemmed |
Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: an in vitro assessment |
title_sort |
docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: an in vitro assessment |
publisher |
Dove Medical Press |
publishDate |
2016 |
url |
https://doaj.org/article/b15d774cf888422981367685c90fbb00 |
work_keys_str_mv |
AT alaarga docosahexaenoicacidliposomesfortargetingchronicinflammatorydiseasesandcanceraninvitroassessment AT jordanny docosahexaenoicacidliposomesfortargetingchronicinflammatorydiseasesandcanceraninvitroassessment AT verhoefjjf docosahexaenoicacidliposomesfortargetingchronicinflammatorydiseasesandcanceraninvitroassessment AT metselaarjm docosahexaenoicacidliposomesfortargetingchronicinflammatorydiseasesandcanceraninvitroassessment AT stormg docosahexaenoicacidliposomesfortargetingchronicinflammatorydiseasesandcanceraninvitroassessment AT kokrj docosahexaenoicacidliposomesfortargetingchronicinflammatorydiseasesandcanceraninvitroassessment |
_version_ |
1718399359672909824 |