Integrative phenotyping of glycemic responders upon clinical weight loss using multi-omics

Abstract Weight loss aims to improve glycemic control in obese but strong variability is observed. Using a multi-omics approach, we investigated differences between 174 responders and 201 non-responders, that had lost >8% body weight following a low-caloric diet (LCD, 800 kcal/d for 8 weeks). The...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Armand Valsesia, Anirikh Chakrabarti, Jörg Hager, Dominique Langin, Wim H. M. Saris, Arne Astrup, Ellen E. Blaak, Nathalie Viguerie, Mojgan Masoodi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b17731f6b55c46028452475f12f8184d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b17731f6b55c46028452475f12f8184d
record_format dspace
spelling oai:doaj.org-article:b17731f6b55c46028452475f12f8184d2021-12-02T17:52:24ZIntegrative phenotyping of glycemic responders upon clinical weight loss using multi-omics10.1038/s41598-020-65936-82045-2322https://doaj.org/article/b17731f6b55c46028452475f12f8184d2020-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-65936-8https://doaj.org/toc/2045-2322Abstract Weight loss aims to improve glycemic control in obese but strong variability is observed. Using a multi-omics approach, we investigated differences between 174 responders and 201 non-responders, that had lost >8% body weight following a low-caloric diet (LCD, 800 kcal/d for 8 weeks). The two groups were comparable at baseline for body composition, glycemic control, adipose tissue transcriptomics and plasma ketone bodies. But they differed significantly in their response to LCD, including improvements in visceral fat, overall insulin resistance (IR) and tissue-specific IR. Transcriptomics analyses found down-regulation in key lipogenic genes (e.g. SCD, ELOVL5) in responders relative to non-responders; metabolomics showed increase in ketone bodies; while proteomics revealed differences in lipoproteins. Findings were consistent between genders; with women displaying smaller improvements owing to a better baseline metabolic condition. Integrative analyses identified a plasma omics model that was able to predict non-responders with strong performance (on a testing dataset, the Receiving Operating Curve Area Under the Curve (ROC AUC) was 75% with 95% Confidence Intervals (CI) [67%, 83%]). This model was based on baseline parameters without the need for intrusive measurements and outperformed clinical models (p = 0.00075, with a +14% difference on the ROC AUCs). Our approach document differences between responders and non-responders, with strong contributions from liver and adipose tissues. Differences may be due to de novo lipogenesis, keto-metabolism and lipoprotein metabolism. These findings are useful for clinical practice to better characterize non-responders both prior and during weight loss.Armand ValsesiaAnirikh ChakrabartiJörg HagerDominique LanginWim H. M. SarisArne AstrupEllen E. BlaakNathalie ViguerieMojgan MasoodiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-14 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Armand Valsesia
Anirikh Chakrabarti
Jörg Hager
Dominique Langin
Wim H. M. Saris
Arne Astrup
Ellen E. Blaak
Nathalie Viguerie
Mojgan Masoodi
Integrative phenotyping of glycemic responders upon clinical weight loss using multi-omics
description Abstract Weight loss aims to improve glycemic control in obese but strong variability is observed. Using a multi-omics approach, we investigated differences between 174 responders and 201 non-responders, that had lost >8% body weight following a low-caloric diet (LCD, 800 kcal/d for 8 weeks). The two groups were comparable at baseline for body composition, glycemic control, adipose tissue transcriptomics and plasma ketone bodies. But they differed significantly in their response to LCD, including improvements in visceral fat, overall insulin resistance (IR) and tissue-specific IR. Transcriptomics analyses found down-regulation in key lipogenic genes (e.g. SCD, ELOVL5) in responders relative to non-responders; metabolomics showed increase in ketone bodies; while proteomics revealed differences in lipoproteins. Findings were consistent between genders; with women displaying smaller improvements owing to a better baseline metabolic condition. Integrative analyses identified a plasma omics model that was able to predict non-responders with strong performance (on a testing dataset, the Receiving Operating Curve Area Under the Curve (ROC AUC) was 75% with 95% Confidence Intervals (CI) [67%, 83%]). This model was based on baseline parameters without the need for intrusive measurements and outperformed clinical models (p = 0.00075, with a +14% difference on the ROC AUCs). Our approach document differences between responders and non-responders, with strong contributions from liver and adipose tissues. Differences may be due to de novo lipogenesis, keto-metabolism and lipoprotein metabolism. These findings are useful for clinical practice to better characterize non-responders both prior and during weight loss.
format article
author Armand Valsesia
Anirikh Chakrabarti
Jörg Hager
Dominique Langin
Wim H. M. Saris
Arne Astrup
Ellen E. Blaak
Nathalie Viguerie
Mojgan Masoodi
author_facet Armand Valsesia
Anirikh Chakrabarti
Jörg Hager
Dominique Langin
Wim H. M. Saris
Arne Astrup
Ellen E. Blaak
Nathalie Viguerie
Mojgan Masoodi
author_sort Armand Valsesia
title Integrative phenotyping of glycemic responders upon clinical weight loss using multi-omics
title_short Integrative phenotyping of glycemic responders upon clinical weight loss using multi-omics
title_full Integrative phenotyping of glycemic responders upon clinical weight loss using multi-omics
title_fullStr Integrative phenotyping of glycemic responders upon clinical weight loss using multi-omics
title_full_unstemmed Integrative phenotyping of glycemic responders upon clinical weight loss using multi-omics
title_sort integrative phenotyping of glycemic responders upon clinical weight loss using multi-omics
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/b17731f6b55c46028452475f12f8184d
work_keys_str_mv AT armandvalsesia integrativephenotypingofglycemicrespondersuponclinicalweightlossusingmultiomics
AT anirikhchakrabarti integrativephenotypingofglycemicrespondersuponclinicalweightlossusingmultiomics
AT jorghager integrativephenotypingofglycemicrespondersuponclinicalweightlossusingmultiomics
AT dominiquelangin integrativephenotypingofglycemicrespondersuponclinicalweightlossusingmultiomics
AT wimhmsaris integrativephenotypingofglycemicrespondersuponclinicalweightlossusingmultiomics
AT arneastrup integrativephenotypingofglycemicrespondersuponclinicalweightlossusingmultiomics
AT elleneblaak integrativephenotypingofglycemicrespondersuponclinicalweightlossusingmultiomics
AT nathalieviguerie integrativephenotypingofglycemicrespondersuponclinicalweightlossusingmultiomics
AT mojganmasoodi integrativephenotypingofglycemicrespondersuponclinicalweightlossusingmultiomics
_version_ 1718379248481206272