Detection and Segmentation of Pelvic Bones Metastases in MRI Images for Patients With Prostate Cancer Based on Deep Learning
ObjectiveTo establish and evaluate the 3D U-Net model for automated segmentation and detection of pelvic bone metastases in patients with prostate cancer (PCa) using diffusion-weighted imaging (DWI) and T1 weighted imaging (T1WI) images.MethodsThe model consisted of two 3D U-Net algorithms. A total...
Guardado en:
Autores principales: | Xiang Liu, Chao Han, Yingpu Cui, Tingting Xie, Xiaodong Zhang, Xiaoying Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b1833943eded433db781e99fd80bb7e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Surgical treatment for pelvic bone metastases
por: Artem V. Buharov, et al.
Publicado: (2021) -
Management of bone metastases in refractory prostate cancer – role of denosumab
por: Paller CJ, et al.
Publicado: (2012) -
Development and validation of the 3D U-Net algorithm for segmentation of pelvic lymph nodes on diffusion-weighted images
por: Xiang Liu, et al.
Publicado: (2021) -
Bone Metastases Are Measurable: The Role of Whole-Body MRI and Positron Emission Tomography
por: Daniela E. Oprea-Lager, et al.
Publicado: (2021) -
How to Improve TRUS-Guided Target Biopsy following Prostate MRI
por: Byung Kwan Park
Publicado: (2021)