Inferring structural connectivity using Ising couplings in models of neuronal networks
Abstract Functional connectivity metrics have been widely used to infer the underlying structural connectivity in neuronal networks. Maximum entropy based Ising models have been suggested to discount the effect of indirect interactions and give good results in inferring the true anatomical connectio...
Guardado en:
Autores principales: | Balasundaram Kadirvelu, Yoshikatsu Hayashi, Slawomir J. Nasuto |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b195e15f002a4a339ee62c6324e0909c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Inferring the connectivity of coupled chaotic oscillators using Kalman filtering
por: E. Forero-Ortiz, et al.
Publicado: (2021) -
Boltzmann sampling from the Ising model using quantum heating of coupled nonlinear oscillators
por: Hayato Goto, et al.
Publicado: (2018) -
Monopole matter from magnetoelastic coupling in the Ising pyrochlore
por: D. Slobinsky, et al.
Publicado: (2021) -
Experimental Investigation of the Dynamics of Coupled Oscillators as Ising Machines
por: Mohammad Khairul Bashar, et al.
Publicado: (2021) -
Transition prediction in the Ising-model.
por: Manfred Füllsack, et al.
Publicado: (2021)