Bayesian learning of chemisorption for bridging the complexity of electronic descriptors

Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–subst...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Siwen Wang, Hemanth Somarajan Pillai, Hongliang Xin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/b19c00b76505438c92ecff26dba7d5e6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b19c00b76505438c92ecff26dba7d5e6
record_format dspace
spelling oai:doaj.org-article:b19c00b76505438c92ecff26dba7d5e62021-12-02T14:42:47ZBayesian learning of chemisorption for bridging the complexity of electronic descriptors10.1038/s41467-020-19524-z2041-1723https://doaj.org/article/b19c00b76505438c92ecff26dba7d5e62020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19524-zhttps://doaj.org/toc/2041-1723Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–substrate interactions.Siwen WangHemanth Somarajan PillaiHongliang XinNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-7 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Siwen Wang
Hemanth Somarajan Pillai
Hongliang Xin
Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
description Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–substrate interactions.
format article
author Siwen Wang
Hemanth Somarajan Pillai
Hongliang Xin
author_facet Siwen Wang
Hemanth Somarajan Pillai
Hongliang Xin
author_sort Siwen Wang
title Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
title_short Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
title_full Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
title_fullStr Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
title_full_unstemmed Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
title_sort bayesian learning of chemisorption for bridging the complexity of electronic descriptors
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/b19c00b76505438c92ecff26dba7d5e6
work_keys_str_mv AT siwenwang bayesianlearningofchemisorptionforbridgingthecomplexityofelectronicdescriptors
AT hemanthsomarajanpillai bayesianlearningofchemisorptionforbridgingthecomplexityofelectronicdescriptors
AT hongliangxin bayesianlearningofchemisorptionforbridgingthecomplexityofelectronicdescriptors
_version_ 1718389590043131904