Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–subst...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b19c00b76505438c92ecff26dba7d5e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b19c00b76505438c92ecff26dba7d5e6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b19c00b76505438c92ecff26dba7d5e62021-12-02T14:42:47ZBayesian learning of chemisorption for bridging the complexity of electronic descriptors10.1038/s41467-020-19524-z2041-1723https://doaj.org/article/b19c00b76505438c92ecff26dba7d5e62020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19524-zhttps://doaj.org/toc/2041-1723Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–substrate interactions.Siwen WangHemanth Somarajan PillaiHongliang XinNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-7 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Siwen Wang Hemanth Somarajan Pillai Hongliang Xin Bayesian learning of chemisorption for bridging the complexity of electronic descriptors |
description |
Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–substrate interactions. |
format |
article |
author |
Siwen Wang Hemanth Somarajan Pillai Hongliang Xin |
author_facet |
Siwen Wang Hemanth Somarajan Pillai Hongliang Xin |
author_sort |
Siwen Wang |
title |
Bayesian learning of chemisorption for bridging the complexity of electronic descriptors |
title_short |
Bayesian learning of chemisorption for bridging the complexity of electronic descriptors |
title_full |
Bayesian learning of chemisorption for bridging the complexity of electronic descriptors |
title_fullStr |
Bayesian learning of chemisorption for bridging the complexity of electronic descriptors |
title_full_unstemmed |
Bayesian learning of chemisorption for bridging the complexity of electronic descriptors |
title_sort |
bayesian learning of chemisorption for bridging the complexity of electronic descriptors |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/b19c00b76505438c92ecff26dba7d5e6 |
work_keys_str_mv |
AT siwenwang bayesianlearningofchemisorptionforbridgingthecomplexityofelectronicdescriptors AT hemanthsomarajanpillai bayesianlearningofchemisorptionforbridgingthecomplexityofelectronicdescriptors AT hongliangxin bayesianlearningofchemisorptionforbridgingthecomplexityofelectronicdescriptors |
_version_ |
1718389590043131904 |