Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–subst...
Guardado en:
Autores principales: | Siwen Wang, Hemanth Somarajan Pillai, Hongliang Xin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b19c00b76505438c92ecff26dba7d5e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Infusing theory into deep learning for interpretable reactivity prediction
por: Shih-Han Wang, et al.
Publicado: (2021) -
Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries
por: Ge Li, et al.
Publicado: (2018) -
Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution
por: Toshikazu Yamada, et al.
Publicado: (2016) -
Vibrational control of selective bond cleavage in dissociative chemisorption of methanol on Cu(111)
por: Jialu Chen, et al.
Publicado: (2018) -
Hydrogen physisorption based on the dissociative hydrogen chemisorption at the sulphur vacancy of MoS2 surface
por: Sang Wook Han, et al.
Publicado: (2017)