Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–subst...
Enregistré dans:
Auteurs principaux: | Siwen Wang, Hemanth Somarajan Pillai, Hongliang Xin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b19c00b76505438c92ecff26dba7d5e6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Infusing theory into deep learning for interpretable reactivity prediction
par: Shih-Han Wang, et autres
Publié: (2021) -
Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries
par: Ge Li, et autres
Publié: (2018) -
Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution
par: Toshikazu Yamada, et autres
Publié: (2016) -
Vibrational control of selective bond cleavage in dissociative chemisorption of methanol on Cu(111)
par: Jialu Chen, et autres
Publié: (2018) -
Hydrogen physisorption based on the dissociative hydrogen chemisorption at the sulphur vacancy of MoS2 surface
par: Sang Wook Han, et autres
Publié: (2017)