Bayesian learning of chemisorption for bridging the complexity of electronic descriptors

Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–subst...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Siwen Wang, Hemanth Somarajan Pillai, Hongliang Xin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/b19c00b76505438c92ecff26dba7d5e6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares