Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–subst...
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b19c00b76505438c92ecff26dba7d5e6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!