Bayesian learning of chemisorption for bridging the complexity of electronic descriptors

Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–subst...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Siwen Wang, Hemanth Somarajan Pillai, Hongliang Xin
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/b19c00b76505438c92ecff26dba7d5e6
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!