Real-time encoding and compression of neuronal spikes by metal-oxide memristors
The need for intelligent compression of big data, for example in neuroscience, has sparked interest in neuromorphic data processing. Here, Gupta et al.use memristors as event integrators to encode and compress neuronal spiking activity recorded by multi-electrode arrays.
Guardado en:
Autores principales: | Isha Gupta, Alexantrou Serb, Ali Khiat, Ralf Zeitler, Stefano Vassanelli, Themistoklis Prodromakis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b1a38fd3a1fa4781acddf1d9e7c272a8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Seamlessly fused digital-analogue reconfigurable computing using memristors
por: Alexantrou Serb, et al.
Publicado: (2018) -
Author Correction: UV induced resistive switching in hybrid polymer metal oxide memristors
por: Spyros Stathopoulos, et al.
Publicado: (2021) -
Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
por: Alexander Serb, et al.
Publicado: (2016) -
An artificial spiking afferent nerve based on Mott memristors for neurorobotics
por: Xumeng Zhang, et al.
Publicado: (2020) -
Chua Corsage memristor based neuron models
por: Yujiao Dong, et al.
Publicado: (2021)