Real-time encoding and compression of neuronal spikes by metal-oxide memristors
The need for intelligent compression of big data, for example in neuroscience, has sparked interest in neuromorphic data processing. Here, Gupta et al.use memristors as event integrators to encode and compress neuronal spiking activity recorded by multi-electrode arrays.
Enregistré dans:
Auteurs principaux: | Isha Gupta, Alexantrou Serb, Ali Khiat, Ralf Zeitler, Stefano Vassanelli, Themistoklis Prodromakis |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b1a38fd3a1fa4781acddf1d9e7c272a8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Seamlessly fused digital-analogue reconfigurable computing using memristors
par: Alexantrou Serb, et autres
Publié: (2018) -
Author Correction: UV induced resistive switching in hybrid polymer metal oxide memristors
par: Spyros Stathopoulos, et autres
Publié: (2021) -
Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
par: Alexander Serb, et autres
Publié: (2016) -
An artificial spiking afferent nerve based on Mott memristors for neurorobotics
par: Xumeng Zhang, et autres
Publié: (2020) -
Chua Corsage memristor based neuron models
par: Yujiao Dong, et autres
Publié: (2021)