A radix‐8 modulo 2n multiplier using area and power‐optimized hard multiple generator
Abstract The moduli 2n multiplier plays a vital role in the design of a residue number system processor. When the radix‐8 booth‐encoded technique is adopted to design this kind of multipliers, the hard multiple generator is crucial in terms of area, power, and delay. This paper presents an area and...
Saved in:
Main Authors: | , |
---|---|
Format: | article |
Language: | EN |
Published: |
Wiley
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/b1b6d78d0ed54cf09049608f94eba939 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:doaj.org-article:b1b6d78d0ed54cf09049608f94eba939 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b1b6d78d0ed54cf09049608f94eba9392021-11-17T13:28:44ZA radix‐8 modulo 2n multiplier using area and power‐optimized hard multiple generator1751-861X1751-860110.1049/cdt2.12001https://doaj.org/article/b1b6d78d0ed54cf09049608f94eba9392021-01-01T00:00:00Zhttps://doi.org/10.1049/cdt2.12001https://doaj.org/toc/1751-8601https://doaj.org/toc/1751-861XAbstract The moduli 2n multiplier plays a vital role in the design of a residue number system processor. When the radix‐8 booth‐encoded technique is adopted to design this kind of multipliers, the hard multiple generator is crucial in terms of area, power, and delay. This paper presents an area and power optimization technique for this kind of generators and its implementation in modulo 2n multiplier to improve the performance. The proposed hard multiplier generator (HMG) uses only ⌈log2n⌉‐2 prefix levels and (n−6)⌈log2n⌉−(⌈log2n⌉−1)2⌈log2n⌉2 total prefix operators. The synthesis of the proposed architectures is done using the Cadence tool at Generic Process design Kit‐45 nm technology. The post‐synthesis result of HMG shows 20.27%–36.57%, 2.43%–18.41% saving in area and power, respectively, while the post‐layout result of HMG shows 20.01%–35.26% and 1.33%–29.44% saving in area and power, respectively. The post‐layout result of modulo 2nmultiplier using optimized HMG shows 7.88%–10.04%, 7.87%–12.50%, 3.09%–11.29%, and 3.11%–8.79% saving in area, power, switching energy and Area delay product, respectively.Naveen Kr. KabraZuber M. PatelWileyarticleComputer engineering. Computer hardwareTK7885-7895Electronic computers. Computer scienceQA75.5-76.95ENIET Computers & Digital Techniques, Vol 15, Iss 1, Pp 36-55 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Computer engineering. Computer hardware TK7885-7895 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
Computer engineering. Computer hardware TK7885-7895 Electronic computers. Computer science QA75.5-76.95 Naveen Kr. Kabra Zuber M. Patel A radix‐8 modulo 2n multiplier using area and power‐optimized hard multiple generator |
description |
Abstract The moduli 2n multiplier plays a vital role in the design of a residue number system processor. When the radix‐8 booth‐encoded technique is adopted to design this kind of multipliers, the hard multiple generator is crucial in terms of area, power, and delay. This paper presents an area and power optimization technique for this kind of generators and its implementation in modulo 2n multiplier to improve the performance. The proposed hard multiplier generator (HMG) uses only ⌈log2n⌉‐2 prefix levels and (n−6)⌈log2n⌉−(⌈log2n⌉−1)2⌈log2n⌉2 total prefix operators. The synthesis of the proposed architectures is done using the Cadence tool at Generic Process design Kit‐45 nm technology. The post‐synthesis result of HMG shows 20.27%–36.57%, 2.43%–18.41% saving in area and power, respectively, while the post‐layout result of HMG shows 20.01%–35.26% and 1.33%–29.44% saving in area and power, respectively. The post‐layout result of modulo 2nmultiplier using optimized HMG shows 7.88%–10.04%, 7.87%–12.50%, 3.09%–11.29%, and 3.11%–8.79% saving in area, power, switching energy and Area delay product, respectively. |
format |
article |
author |
Naveen Kr. Kabra Zuber M. Patel |
author_facet |
Naveen Kr. Kabra Zuber M. Patel |
author_sort |
Naveen Kr. Kabra |
title |
A radix‐8 modulo 2n multiplier using area and power‐optimized hard multiple generator |
title_short |
A radix‐8 modulo 2n multiplier using area and power‐optimized hard multiple generator |
title_full |
A radix‐8 modulo 2n multiplier using area and power‐optimized hard multiple generator |
title_fullStr |
A radix‐8 modulo 2n multiplier using area and power‐optimized hard multiple generator |
title_full_unstemmed |
A radix‐8 modulo 2n multiplier using area and power‐optimized hard multiple generator |
title_sort |
radix‐8 modulo 2n multiplier using area and power‐optimized hard multiple generator |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/b1b6d78d0ed54cf09049608f94eba939 |
work_keys_str_mv |
AT naveenkrkabra aradix8modulo2nmultiplierusingareaandpoweroptimizedhardmultiplegenerator AT zubermpatel aradix8modulo2nmultiplierusingareaandpoweroptimizedhardmultiplegenerator AT naveenkrkabra radix8modulo2nmultiplierusingareaandpoweroptimizedhardmultiplegenerator AT zubermpatel radix8modulo2nmultiplierusingareaandpoweroptimizedhardmultiplegenerator |
_version_ |
1718425566144626688 |