iRegNet: Non-Rigid Registration of MRI to Interventional US for Brain-Shift Compensation Using Convolutional Neural Networks
Accurate and safe neurosurgical intervention can be affected by intra-operative tissue deformation, known as brain-shift. In this study, we propose an automatic, fast, and accurate deformable method, called iRegNet, for registering pre-operative magnetic resonance images to intra-operative ultrasoun...
Guardado en:
Autores principales: | Ramy A. Zeineldin, Mohamed E. Karar, Ziad Elshaer, Markus Schmidhammer, Jan Coburger, Christian R. Wirtz, Oliver Burgert, Franziska Mathis-Ullrich |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b1bbf5bbb9cd4e6fa898e6363daf2102 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automated incisional hernia characterization by non-rigid registration of CT images – a pilot study
por: Voß Samuel, et al.
Publicado: (2020) -
Point Cloud Registration Algorithm Based on Laplace Mixture Model
por: Qin Shu, et al.
Publicado: (2021) -
Evaluating Registrations of Serial Sections With Distortions of the Ground Truths
por: Oleg Lobachev, et al.
Publicado: (2021) -
3D Model Registration-Based Batch Wafer-ID Recognition Algorithm
por: Fang Cao, et al.
Publicado: (2021) -
Un experimento de registro de hechos vitales por muestreo en el Perú = Sample vital registration experiment
por: Cavanaugh, Joseph A.
Publicado: (2014)