PCA-based unsupervised feature extraction for gene expression analysis of COVID-19 patients
Abstract Coronavirus disease 2019 (COVID-19) is raging worldwide. This potentially fatal infectious disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the complete mechanism of COVID-19 is not well understood. Therefore, we analyzed gene expression profiles o...
Guardado en:
Autores principales: | Kota Fujisawa, Mamoru Shimo, Y.-H. Taguchi, Shinya Ikematsu, Ryota Miyata |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b1c1ba980c0a438490674f11c0b77ecc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of genes associated with altered gene expression and m6A profiles during hypoxia using tensor decomposition based unsupervised feature extraction
por: Sanjiban Sekhar Roy, et al.
Publicado: (2021) -
A Novel Method for Multivariant Pneumonia Classification Based on Hybrid CNN-PCA Based Feature Extraction Using Extreme Learning Machine With CXR Images
por: Md. Nahiduzzaman, et al.
Publicado: (2021) -
PCa dynamics with neuroendocrine differentiation and distributed delay
por: Leo Turner, et al.
Publicado: (2021) -
An Exploration of Semantic Features in an Unsupervised Thematic Fit Evaluation Framework
por: Asad Sayeed, et al.
Publicado: (2015) -
PCA analysis of wind direction climate in the baltic states
por: Maksims Pogumirskis, et al.
Publicado: (2021)