A power approximation for the Kenward and Roger Wald test in the linear mixed model.
We derive a noncentral [Formula: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b1e26b13d0d641eb804b9a3ac3bc691c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b1e26b13d0d641eb804b9a3ac3bc691c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b1e26b13d0d641eb804b9a3ac3bc691c2021-12-02T20:06:42ZA power approximation for the Kenward and Roger Wald test in the linear mixed model.1932-620310.1371/journal.pone.0254811https://doaj.org/article/b1e26b13d0d641eb804b9a3ac3bc691c2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0254811https://doaj.org/toc/1932-6203We derive a noncentral [Formula: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled Wald statistic. Via Monte Carlo simulation, we demonstrate that the new power approximation is accurate for cluster randomized trials and longitudinal study designs. The method retains accuracy for small sample sizes, even in the presence of missing data. We illustrate the method with a power calculation for an unbalanced group-randomized trial in oral cancer prevention.Sarah M KreidlerBrandy M RinghamKeith E MullerDeborah H GlueckPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 7, p e0254811 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sarah M Kreidler Brandy M Ringham Keith E Muller Deborah H Glueck A power approximation for the Kenward and Roger Wald test in the linear mixed model. |
description |
We derive a noncentral [Formula: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled Wald statistic. Via Monte Carlo simulation, we demonstrate that the new power approximation is accurate for cluster randomized trials and longitudinal study designs. The method retains accuracy for small sample sizes, even in the presence of missing data. We illustrate the method with a power calculation for an unbalanced group-randomized trial in oral cancer prevention. |
format |
article |
author |
Sarah M Kreidler Brandy M Ringham Keith E Muller Deborah H Glueck |
author_facet |
Sarah M Kreidler Brandy M Ringham Keith E Muller Deborah H Glueck |
author_sort |
Sarah M Kreidler |
title |
A power approximation for the Kenward and Roger Wald test in the linear mixed model. |
title_short |
A power approximation for the Kenward and Roger Wald test in the linear mixed model. |
title_full |
A power approximation for the Kenward and Roger Wald test in the linear mixed model. |
title_fullStr |
A power approximation for the Kenward and Roger Wald test in the linear mixed model. |
title_full_unstemmed |
A power approximation for the Kenward and Roger Wald test in the linear mixed model. |
title_sort |
power approximation for the kenward and roger wald test in the linear mixed model. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/b1e26b13d0d641eb804b9a3ac3bc691c |
work_keys_str_mv |
AT sarahmkreidler apowerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel AT brandymringham apowerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel AT keithemuller apowerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel AT deborahhglueck apowerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel AT sarahmkreidler powerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel AT brandymringham powerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel AT keithemuller powerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel AT deborahhglueck powerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel |
_version_ |
1718375382043852800 |