A power approximation for the Kenward and Roger Wald test in the linear mixed model.

We derive a noncentral [Formula: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sarah M Kreidler, Brandy M Ringham, Keith E Muller, Deborah H Glueck
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b1e26b13d0d641eb804b9a3ac3bc691c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b1e26b13d0d641eb804b9a3ac3bc691c
record_format dspace
spelling oai:doaj.org-article:b1e26b13d0d641eb804b9a3ac3bc691c2021-12-02T20:06:42ZA power approximation for the Kenward and Roger Wald test in the linear mixed model.1932-620310.1371/journal.pone.0254811https://doaj.org/article/b1e26b13d0d641eb804b9a3ac3bc691c2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0254811https://doaj.org/toc/1932-6203We derive a noncentral [Formula: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled Wald statistic. Via Monte Carlo simulation, we demonstrate that the new power approximation is accurate for cluster randomized trials and longitudinal study designs. The method retains accuracy for small sample sizes, even in the presence of missing data. We illustrate the method with a power calculation for an unbalanced group-randomized trial in oral cancer prevention.Sarah M KreidlerBrandy M RinghamKeith E MullerDeborah H GlueckPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 7, p e0254811 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Sarah M Kreidler
Brandy M Ringham
Keith E Muller
Deborah H Glueck
A power approximation for the Kenward and Roger Wald test in the linear mixed model.
description We derive a noncentral [Formula: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled Wald statistic. Via Monte Carlo simulation, we demonstrate that the new power approximation is accurate for cluster randomized trials and longitudinal study designs. The method retains accuracy for small sample sizes, even in the presence of missing data. We illustrate the method with a power calculation for an unbalanced group-randomized trial in oral cancer prevention.
format article
author Sarah M Kreidler
Brandy M Ringham
Keith E Muller
Deborah H Glueck
author_facet Sarah M Kreidler
Brandy M Ringham
Keith E Muller
Deborah H Glueck
author_sort Sarah M Kreidler
title A power approximation for the Kenward and Roger Wald test in the linear mixed model.
title_short A power approximation for the Kenward and Roger Wald test in the linear mixed model.
title_full A power approximation for the Kenward and Roger Wald test in the linear mixed model.
title_fullStr A power approximation for the Kenward and Roger Wald test in the linear mixed model.
title_full_unstemmed A power approximation for the Kenward and Roger Wald test in the linear mixed model.
title_sort power approximation for the kenward and roger wald test in the linear mixed model.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/b1e26b13d0d641eb804b9a3ac3bc691c
work_keys_str_mv AT sarahmkreidler apowerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT brandymringham apowerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT keithemuller apowerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT deborahhglueck apowerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT sarahmkreidler powerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT brandymringham powerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT keithemuller powerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT deborahhglueck powerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
_version_ 1718375382043852800