A power approximation for the Kenward and Roger Wald test in the linear mixed model.
We derive a noncentral [Formula: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled...
Guardado en:
Autores principales: | Sarah M Kreidler, Brandy M Ringham, Keith E Muller, Deborah H Glueck |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b1e26b13d0d641eb804b9a3ac3bc691c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
FORECASTING OF INCIDENCE OF HAV WITH USE OF THE SCHEDULED PLAN OF WALD
por: V. M. Volkova, et al.
Publicado: (2018) -
ENTREVISTA A LUDWIG ZELLER Y SUSANA WALD (FRAGMENTOS)
por: Sol,Daniela
Publicado: (2016) -
Stopping power beyond the adiabatic approximation
por: M. Caro, et al.
Publicado: (2017) -
Quantum approximate optimization for hard problems in linear algebra
por: Ajinkya Borle, Vincent E. Elfving, Samuel J. Lomonaco
Publicado: (2021) -
Retentive capacity of power output and linear versus non-linear mapping of power loss in the isotonic muscular endurance test
por: Hong-qi Xu, et al.
Publicado: (2021)