A power approximation for the Kenward and Roger Wald test in the linear mixed model.
We derive a noncentral [Formula: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled...
Enregistré dans:
Auteurs principaux: | Sarah M Kreidler, Brandy M Ringham, Keith E Muller, Deborah H Glueck |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b1e26b13d0d641eb804b9a3ac3bc691c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
FORECASTING OF INCIDENCE OF HAV WITH USE OF THE SCHEDULED PLAN OF WALD
par: V. M. Volkova, et autres
Publié: (2018) -
ENTREVISTA A LUDWIG ZELLER Y SUSANA WALD (FRAGMENTOS)
par: Sol,Daniela
Publié: (2016) -
Stopping power beyond the adiabatic approximation
par: M. Caro, et autres
Publié: (2017) -
Quantum approximate optimization for hard problems in linear algebra
par: Ajinkya Borle, Vincent E. Elfving, Samuel J. Lomonaco
Publié: (2021) -
Retentive capacity of power output and linear versus non-linear mapping of power loss in the isotonic muscular endurance test
par: Hong-qi Xu, et autres
Publié: (2021)