Accurate distinction of pathogenic from benign CNVs in mental retardation.
Copy number variants (CNVs) have recently been recognized as a common form of genomic variation in humans. Hundreds of CNVs can be detected in any individual genome using genomic microarrays or whole genome sequencing technology, but their phenotypic consequences are still poorly understood. Rare CN...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b1e8eb218cdc4f14be97291e55b4e2e5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b1e8eb218cdc4f14be97291e55b4e2e5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b1e8eb218cdc4f14be97291e55b4e2e52021-11-25T05:42:32ZAccurate distinction of pathogenic from benign CNVs in mental retardation.1553-734X1553-735810.1371/journal.pcbi.1000752https://doaj.org/article/b1e8eb218cdc4f14be97291e55b4e2e52010-04-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/20421931/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Copy number variants (CNVs) have recently been recognized as a common form of genomic variation in humans. Hundreds of CNVs can be detected in any individual genome using genomic microarrays or whole genome sequencing technology, but their phenotypic consequences are still poorly understood. Rare CNVs have been reported as a frequent cause of neurological disorders such as mental retardation (MR), schizophrenia and autism, prompting widespread implementation of CNV screening in diagnostics. In previous studies we have shown that, in contrast to benign CNVs, MR-associated CNVs are significantly enriched in genes whose mouse orthologues, when disrupted, result in a nervous system phenotype. In this study we developed and validated a novel computational method for differentiating between benign and MR-associated CNVs using structural and functional genomic features to annotate each CNV. In total 13 genomic features were included in the final version of a Naïve Bayesian Tree classifier, with LINE density and mouse knock-out phenotypes contributing most to the classifier's accuracy. After demonstrating that our method (called GECCO) perfectly classifies CNVs causing known MR-associated syndromes, we show that it achieves high accuracy (94%) and negative predictive value (99%) on a blinded test set of more than 1,200 CNVs from a large cohort of individuals with MR. These results indicate that this classification method will be of value for objectively prioritizing CNVs in clinical research and diagnostics.Jayne Y Hehir-KwaNienke WieskampCaleb WebberRolph PfundtHan G BrunnerChristian GilissenBert B A de VriesChris P PontingJoris A VeltmanPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 6, Iss 4, p e1000752 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Jayne Y Hehir-Kwa Nienke Wieskamp Caleb Webber Rolph Pfundt Han G Brunner Christian Gilissen Bert B A de Vries Chris P Ponting Joris A Veltman Accurate distinction of pathogenic from benign CNVs in mental retardation. |
description |
Copy number variants (CNVs) have recently been recognized as a common form of genomic variation in humans. Hundreds of CNVs can be detected in any individual genome using genomic microarrays or whole genome sequencing technology, but their phenotypic consequences are still poorly understood. Rare CNVs have been reported as a frequent cause of neurological disorders such as mental retardation (MR), schizophrenia and autism, prompting widespread implementation of CNV screening in diagnostics. In previous studies we have shown that, in contrast to benign CNVs, MR-associated CNVs are significantly enriched in genes whose mouse orthologues, when disrupted, result in a nervous system phenotype. In this study we developed and validated a novel computational method for differentiating between benign and MR-associated CNVs using structural and functional genomic features to annotate each CNV. In total 13 genomic features were included in the final version of a Naïve Bayesian Tree classifier, with LINE density and mouse knock-out phenotypes contributing most to the classifier's accuracy. After demonstrating that our method (called GECCO) perfectly classifies CNVs causing known MR-associated syndromes, we show that it achieves high accuracy (94%) and negative predictive value (99%) on a blinded test set of more than 1,200 CNVs from a large cohort of individuals with MR. These results indicate that this classification method will be of value for objectively prioritizing CNVs in clinical research and diagnostics. |
format |
article |
author |
Jayne Y Hehir-Kwa Nienke Wieskamp Caleb Webber Rolph Pfundt Han G Brunner Christian Gilissen Bert B A de Vries Chris P Ponting Joris A Veltman |
author_facet |
Jayne Y Hehir-Kwa Nienke Wieskamp Caleb Webber Rolph Pfundt Han G Brunner Christian Gilissen Bert B A de Vries Chris P Ponting Joris A Veltman |
author_sort |
Jayne Y Hehir-Kwa |
title |
Accurate distinction of pathogenic from benign CNVs in mental retardation. |
title_short |
Accurate distinction of pathogenic from benign CNVs in mental retardation. |
title_full |
Accurate distinction of pathogenic from benign CNVs in mental retardation. |
title_fullStr |
Accurate distinction of pathogenic from benign CNVs in mental retardation. |
title_full_unstemmed |
Accurate distinction of pathogenic from benign CNVs in mental retardation. |
title_sort |
accurate distinction of pathogenic from benign cnvs in mental retardation. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2010 |
url |
https://doaj.org/article/b1e8eb218cdc4f14be97291e55b4e2e5 |
work_keys_str_mv |
AT jayneyhehirkwa accuratedistinctionofpathogenicfrombenigncnvsinmentalretardation AT nienkewieskamp accuratedistinctionofpathogenicfrombenigncnvsinmentalretardation AT calebwebber accuratedistinctionofpathogenicfrombenigncnvsinmentalretardation AT rolphpfundt accuratedistinctionofpathogenicfrombenigncnvsinmentalretardation AT hangbrunner accuratedistinctionofpathogenicfrombenigncnvsinmentalretardation AT christiangilissen accuratedistinctionofpathogenicfrombenigncnvsinmentalretardation AT bertbadevries accuratedistinctionofpathogenicfrombenigncnvsinmentalretardation AT chrispponting accuratedistinctionofpathogenicfrombenigncnvsinmentalretardation AT jorisaveltman accuratedistinctionofpathogenicfrombenigncnvsinmentalretardation |
_version_ |
1718414538550804480 |