Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets
Schulz et al. systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference machine-learning and biomedical datasets. Complicated nonlinear intervariable relationships remain largely inaccessible for predicting key phe...
Enregistré dans:
Auteurs principaux: | , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b1ee0d1de11c40d8869725556c90d89f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Schulz et al. systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference machine-learning and biomedical datasets. Complicated nonlinear intervariable relationships remain largely inaccessible for predicting key phenotypes from typical brain scans. |
---|