Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets
Schulz et al. systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference machine-learning and biomedical datasets. Complicated nonlinear intervariable relationships remain largely inaccessible for predicting key phe...
Guardado en:
Autores principales: | Marc-Andre Schulz, B. T. Thomas Yeo, Joshua T. Vogelstein, Janaina Mourao-Miranada, Jakob N. Kather, Konrad Kording, Blake Richards, Danilo Bzdok |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b1ee0d1de11c40d8869725556c90d89f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
INSTANCE – the Italian seismic dataset for machine learning
por: A. Michelini, et al.
Publicado: (2021) -
Deep learning identifies partially overlapping subnetworks in the human social brain
por: Hannah Kiesow, et al.
Publicado: (2021) -
MoVi: A large multi-purpose human motion and video dataset.
por: Saeed Ghorbani, et al.
Publicado: (2021) -
Identifying the Machine Learning Techniques for Classification of Target Datasets
por: Abdul Ahad Abro, et al.
Publicado: (2020) -
Multimodal Emotion Recognition on RAVDESS Dataset Using Transfer Learning
por: Cristina Luna-Jiménez, et al.
Publicado: (2021)