On the Exact Values of HZ-Index for the Graphs under Operations
Topological index (TI) is a function from the set of graphs to the set of real numbers that associates a unique real number to each graph, and two graphs necessarily have the same value of the TI if these are structurally isomorphic. In this note, we compute the HZ−index of the four generalized sum...
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b20a1f86161840b782a2b17a574a2c83 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Topological index (TI) is a function from the set of graphs to the set of real numbers that associates a unique real number to each graph, and two graphs necessarily have the same value of the TI if these are structurally isomorphic. In this note, we compute the HZ−index of the four generalized sum graphs in the form of the various Zagreb indices of their factor graphs. These graphs are obtained by the strong product of the graphs G and DkG, where Dk∈Sk,Rk,Qk,Tk represents the four generalized subdivision-related operations for the integral value of k≥1 and DkG is a graph that is obtained by applying Dk on G. At the end, as an illustration, we compute the HZ−index of the generalized sum graphs for exactly k=1 and compare the obtained results. |
---|