On the Exact Values of HZ-Index for the Graphs under Operations
Topological index (TI) is a function from the set of graphs to the set of real numbers that associates a unique real number to each graph, and two graphs necessarily have the same value of the TI if these are structurally isomorphic. In this note, we compute the HZ−index of the four generalized sum...
Saved in:
Main Authors: | , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Hindawi Limited
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/b20a1f86161840b782a2b17a574a2c83 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Topological index (TI) is a function from the set of graphs to the set of real numbers that associates a unique real number to each graph, and two graphs necessarily have the same value of the TI if these are structurally isomorphic. In this note, we compute the HZ−index of the four generalized sum graphs in the form of the various Zagreb indices of their factor graphs. These graphs are obtained by the strong product of the graphs G and DkG, where Dk∈Sk,Rk,Qk,Tk represents the four generalized subdivision-related operations for the integral value of k≥1 and DkG is a graph that is obtained by applying Dk on G. At the end, as an illustration, we compute the HZ−index of the generalized sum graphs for exactly k=1 and compare the obtained results. |
---|