Data pre-processing and artificial neural networks for tidal level prediction at the Pearl River Estuary
Traditionally, tidal level is predicted by harmonic analysis (HA). In this paper, three hybrid models that couple varied pre-processing methods, which are empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and empirical wavelet transform (EWT), with the nonlinear autor...
Guardado en:
Autores principales: | Bing-Xian Liang, Jin-Peng Hu, Cheng Liu, Bo Hong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b20b356ae36443f8aeec1c324b36e4c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Uncertainty analysis of monthly river flow modeling in consecutive hydrometric stations using integrated data-driven models
por: Karim Amininia, et al.
Publicado: (2021) -
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
por: V. Golovachyova, et al.
Publicado: (2020) -
Pattern Recognition of Human Face With Photos Using KNN Algorithm
por: Dedy Kurniadi, et al.
Publicado: (2021) -
Optimization and improvement of fake news detection using deep learning approaches for societal benefit
por: Tavishee Chauhan, M.E, et al.
Publicado: (2021) -
DESIGNING DIGITAL CONTROLLERS FOR A CONTROLLED PLANT
por: A. Khaimuldin, et al.
Publicado: (2020)