Data pre-processing and artificial neural networks for tidal level prediction at the Pearl River Estuary
Traditionally, tidal level is predicted by harmonic analysis (HA). In this paper, three hybrid models that couple varied pre-processing methods, which are empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and empirical wavelet transform (EWT), with the nonlinear autor...
Enregistré dans:
Auteurs principaux: | Bing-Xian Liang, Jin-Peng Hu, Cheng Liu, Bo Hong |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IWA Publishing
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b20b356ae36443f8aeec1c324b36e4c8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Uncertainty analysis of monthly river flow modeling in consecutive hydrometric stations using integrated data-driven models
par: Karim Amininia, et autres
Publié: (2021) -
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
par: V. Golovachyova, et autres
Publié: (2020) -
Pattern Recognition of Human Face With Photos Using KNN Algorithm
par: Dedy Kurniadi, et autres
Publié: (2021) -
Optimization and improvement of fake news detection using deep learning approaches for societal benefit
par: Tavishee Chauhan, M.E, et autres
Publié: (2021) -
DESIGNING DIGITAL CONTROLLERS FOR A CONTROLLED PLANT
par: A. Khaimuldin, et autres
Publié: (2020)