Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
Abstract Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomec...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b213273ac6354f659c8193cbc71ac4c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b213273ac6354f659c8193cbc71ac4c0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b213273ac6354f659c8193cbc71ac4c02021-12-05T12:12:47ZHaemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis10.1038/s41598-021-02482-x2045-2322https://doaj.org/article/b213273ac6354f659c8193cbc71ac4c02021-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02482-xhttps://doaj.org/toc/2045-2322Abstract Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomechanics and impact on the fate of the CTC. Here we mathematically explored the distribution of velocities and the corresponding streamlines at the bifurcations of large blood vessel and characterized an area of low-velocity at the carina of bifurcation that favours the residence of CTC. In addition to this fluid physics effect, the adhesive capabilities of the CTC provide with a biological competitive advantage resulting in a marginal but systematic arrest as evidenced by dynamic in vitro recirculation in Y-microchannels and by perfusion in in vivo mice models. Our results also demonstrate that viscosity, as a main determinant of the Reynolds number that define flow biomechanics, may be modulated to limit or impair CTC accumulation at the bifurcation of blood vessels, in agreement with the apparent positive effect observed in the clinical setting by anticoagulants in advanced oncology disease.Carlos Casas-ArozamenaAlberto Otero-CachoBastian CarneroCristina AlmengloMaria AymerichLorena Alonso-AlconadaAlba FerreirosAlicia AbaloCarmen Bao-VarelaMaria Teresa Flores-AriasEzequiel AlvarezAlberto P. MunuzuriMiguel AbalNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Carlos Casas-Arozamena Alberto Otero-Cacho Bastian Carnero Cristina Almenglo Maria Aymerich Lorena Alonso-Alconada Alba Ferreiros Alicia Abalo Carmen Bao-Varela Maria Teresa Flores-Arias Ezequiel Alvarez Alberto P. Munuzuri Miguel Abal Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis |
description |
Abstract Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomechanics and impact on the fate of the CTC. Here we mathematically explored the distribution of velocities and the corresponding streamlines at the bifurcations of large blood vessel and characterized an area of low-velocity at the carina of bifurcation that favours the residence of CTC. In addition to this fluid physics effect, the adhesive capabilities of the CTC provide with a biological competitive advantage resulting in a marginal but systematic arrest as evidenced by dynamic in vitro recirculation in Y-microchannels and by perfusion in in vivo mice models. Our results also demonstrate that viscosity, as a main determinant of the Reynolds number that define flow biomechanics, may be modulated to limit or impair CTC accumulation at the bifurcation of blood vessels, in agreement with the apparent positive effect observed in the clinical setting by anticoagulants in advanced oncology disease. |
format |
article |
author |
Carlos Casas-Arozamena Alberto Otero-Cacho Bastian Carnero Cristina Almenglo Maria Aymerich Lorena Alonso-Alconada Alba Ferreiros Alicia Abalo Carmen Bao-Varela Maria Teresa Flores-Arias Ezequiel Alvarez Alberto P. Munuzuri Miguel Abal |
author_facet |
Carlos Casas-Arozamena Alberto Otero-Cacho Bastian Carnero Cristina Almenglo Maria Aymerich Lorena Alonso-Alconada Alba Ferreiros Alicia Abalo Carmen Bao-Varela Maria Teresa Flores-Arias Ezequiel Alvarez Alberto P. Munuzuri Miguel Abal |
author_sort |
Carlos Casas-Arozamena |
title |
Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis |
title_short |
Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis |
title_full |
Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis |
title_fullStr |
Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis |
title_full_unstemmed |
Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis |
title_sort |
haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b213273ac6354f659c8193cbc71ac4c0 |
work_keys_str_mv |
AT carloscasasarozamena haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis AT albertooterocacho haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis AT bastiancarnero haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis AT cristinaalmenglo haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis AT mariaaymerich haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis AT lorenaalonsoalconada haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis AT albaferreiros haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis AT aliciaabalo haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis AT carmenbaovarela haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis AT mariateresafloresarias haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis AT ezequielalvarez haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis AT albertopmunuzuri haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis AT miguelabal haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis |
_version_ |
1718372152221106176 |