Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis

Abstract Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomec...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carlos Casas-Arozamena, Alberto Otero-Cacho, Bastian Carnero, Cristina Almenglo, Maria Aymerich, Lorena Alonso-Alconada, Alba Ferreiros, Alicia Abalo, Carmen Bao-Varela, Maria Teresa Flores-Arias, Ezequiel Alvarez, Alberto P. Munuzuri, Miguel Abal
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b213273ac6354f659c8193cbc71ac4c0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b213273ac6354f659c8193cbc71ac4c0
record_format dspace
spelling oai:doaj.org-article:b213273ac6354f659c8193cbc71ac4c02021-12-05T12:12:47ZHaemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis10.1038/s41598-021-02482-x2045-2322https://doaj.org/article/b213273ac6354f659c8193cbc71ac4c02021-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02482-xhttps://doaj.org/toc/2045-2322Abstract Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomechanics and impact on the fate of the CTC. Here we mathematically explored the distribution of velocities and the corresponding streamlines at the bifurcations of large blood vessel and characterized an area of low-velocity at the carina of bifurcation that favours the residence of CTC. In addition to this fluid physics effect, the adhesive capabilities of the CTC provide with a biological competitive advantage resulting in a marginal but systematic arrest as evidenced by dynamic in vitro recirculation in Y-microchannels and by perfusion in in vivo mice models. Our results also demonstrate that viscosity, as a main determinant of the Reynolds number that define flow biomechanics, may be modulated to limit or impair CTC accumulation at the bifurcation of blood vessels, in agreement with the apparent positive effect observed in the clinical setting by anticoagulants in advanced oncology disease.Carlos Casas-ArozamenaAlberto Otero-CachoBastian CarneroCristina AlmengloMaria AymerichLorena Alonso-AlconadaAlba FerreirosAlicia AbaloCarmen Bao-VarelaMaria Teresa Flores-AriasEzequiel AlvarezAlberto P. MunuzuriMiguel AbalNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Carlos Casas-Arozamena
Alberto Otero-Cacho
Bastian Carnero
Cristina Almenglo
Maria Aymerich
Lorena Alonso-Alconada
Alba Ferreiros
Alicia Abalo
Carmen Bao-Varela
Maria Teresa Flores-Arias
Ezequiel Alvarez
Alberto P. Munuzuri
Miguel Abal
Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
description Abstract Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomechanics and impact on the fate of the CTC. Here we mathematically explored the distribution of velocities and the corresponding streamlines at the bifurcations of large blood vessel and characterized an area of low-velocity at the carina of bifurcation that favours the residence of CTC. In addition to this fluid physics effect, the adhesive capabilities of the CTC provide with a biological competitive advantage resulting in a marginal but systematic arrest as evidenced by dynamic in vitro recirculation in Y-microchannels and by perfusion in in vivo mice models. Our results also demonstrate that viscosity, as a main determinant of the Reynolds number that define flow biomechanics, may be modulated to limit or impair CTC accumulation at the bifurcation of blood vessels, in agreement with the apparent positive effect observed in the clinical setting by anticoagulants in advanced oncology disease.
format article
author Carlos Casas-Arozamena
Alberto Otero-Cacho
Bastian Carnero
Cristina Almenglo
Maria Aymerich
Lorena Alonso-Alconada
Alba Ferreiros
Alicia Abalo
Carmen Bao-Varela
Maria Teresa Flores-Arias
Ezequiel Alvarez
Alberto P. Munuzuri
Miguel Abal
author_facet Carlos Casas-Arozamena
Alberto Otero-Cacho
Bastian Carnero
Cristina Almenglo
Maria Aymerich
Lorena Alonso-Alconada
Alba Ferreiros
Alicia Abalo
Carmen Bao-Varela
Maria Teresa Flores-Arias
Ezequiel Alvarez
Alberto P. Munuzuri
Miguel Abal
author_sort Carlos Casas-Arozamena
title Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
title_short Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
title_full Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
title_fullStr Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
title_full_unstemmed Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
title_sort haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b213273ac6354f659c8193cbc71ac4c0
work_keys_str_mv AT carloscasasarozamena haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT albertooterocacho haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT bastiancarnero haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT cristinaalmenglo haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT mariaaymerich haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT lorenaalonsoalconada haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT albaferreiros haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT aliciaabalo haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT carmenbaovarela haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT mariateresafloresarias haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT ezequielalvarez haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT albertopmunuzuri haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
AT miguelabal haemodynamicdependentarrestofcirculatingtumourcellsatlargebloodvesselbifurcationsasnewmodelformetastasis
_version_ 1718372152221106176