Characterization of meta-Cresol Purple for spectrophotometric pH measurements in saline and hypersaline media at sub-zero temperatures

Abstract Accurate pH measurements in polar waters and sea ice brines require pH indicator dyes characterized at near-zero and below-zero temperatures and high salinities. We present experimentally determined physical and chemical characteristics of purified meta-Cresol Purple (mCP) pH indicator dye...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Socratis Loucaides, Victoire M. C. Rèrolle, Stathys Papadimitriou, Hilary Kennedy, Matthew C. Mowlem, Andrew G. Dickson, Martha Gledhill, Eric P. Achterberg
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b223db7be91a4039879f39e94bf14857
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Accurate pH measurements in polar waters and sea ice brines require pH indicator dyes characterized at near-zero and below-zero temperatures and high salinities. We present experimentally determined physical and chemical characteristics of purified meta-Cresol Purple (mCP) pH indicator dye suitable for pH measurements in seawater and conservative seawater-derived brines at salinities (S) between 35 and 100 and temperatures (T) between their freezing point and 298.15 K (25 °C). Within this temperature and salinity range, using purified mCP and a novel thermostated spectrophotometric device, the pH on the total scale (pHT) can be calculated from direct measurements of the absorbance ratio R of the dye in natural samples as $${\boldsymbol{p}}{{\boldsymbol{H}}}_{{\boldsymbol{T}}}{\boldsymbol{=}}{\boldsymbol{-}}{\bf{log}}({{\boldsymbol{k}}}_{{\bf{2}}}^{{\boldsymbol{T}}}{{\boldsymbol{e}}}_{{\bf{2}}}){\boldsymbol{+}}\,{\bf{log}}(\frac{{\boldsymbol{R}}{\boldsymbol{-}}{{\boldsymbol{e}}}_{{\bf{1}}}}{{\bf{1}}{\boldsymbol{-}}{\boldsymbol{R}}\frac{{{\boldsymbol{e}}}_{{\bf{3}}}}{{{\boldsymbol{e}}}_{{\bf{2}}}}})$$ p H T = − log ( k 2 T e 2 ) + log ( R − e 1 1 − R e 3 e 2 ) Based on the mCP characterization in these extended conditions, the temperature and salinity dependence of the molar absorptivity ratios and −  $${\bf{log}}({{\boldsymbol{k}}}_{{\bf{2}}}^{{\boldsymbol{T}}}{{\boldsymbol{e}}}_{{\bf{2}}})$$ log ( k 2 T e 2 ) of purified mCP is described by the following functions: e 1 = −0.004363 + 3.598 × 10−5 T, e 3/e 2 = −0.016224 + 2.42851 × 10−4 T + 5.05663 × 10−5(S − 35), and −  $${\bf{log}}({{\boldsymbol{k}}}_{{\bf{2}}}^{{\boldsymbol{T}}}{{\boldsymbol{e}}}_{{\bf{2}}})$$ log ( k 2 T e 2 ) = −319.8369 + 0.688159 S −0.00018374 S 2 + (10508.724 − 32.9599 S + 0.059082S 2) T−1 + (55.54253 − 0.101639 S) ln T −0.08112151T. This work takes the characterisation of mCP beyond the currently available ranges of 278.15 K ≤ T ≤ 308.15 K and 20 ≤ S ≤ 40 in natural seawater, thereby allowing high quality pHT measurements in polar systems.