Clinically applicable artificial intelligence system for dental diagnosis with CBCT
Abstract In this study, a novel AI system based on deep learning methods was evaluated to determine its real-time performance of CBCT imaging diagnosis of anatomical landmarks, pathologies, clinical effectiveness, and safety when used by dentists in a clinical setting. The system consists of 5 modul...
Guardado en:
Autores principales: | Matvey Ezhov, Maxim Gusarev, Maria Golitsyna, Julian M. Yates, Evgeny Kushnerev, Dania Tamimi, Secil Aksoy, Eugene Shumilov, Alex Sanders, Kaan Orhan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b225240d1f0b411598955245409d2c54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Clinically applicable artificial intelligence system for dental diagnosis with CBCT
por: Matvey Ezhov, et al.
Publicado: (2021) -
The Learning Curve of Artificial Intelligence for Dental Implant Treatment Planning: A Descriptive Study
por: Pathompong Roongruangsilp, et al.
Publicado: (2021) - Artificial intelligence
-
Morphometric Predictors of Lingual Undercut Depth in the Posterior Mandible and their Relevance to Immediate Dental Implant Insertion: Recommendations for CBCT
por: AbuKaraky,Ashraf E, et al.
Publicado: (2019) -
A Comparative Study on the Voxel Values in Alveolar Bones Acquired by MDCT and Newly Developed Dental Dual-Energy CBCT
por: Sungho Chang, et al.
Publicado: (2021)