Computation Offloading Optimization in Mobile Edge Computing Based on HIBSA
Multiaccess edge computation (MEC) is a hotspot in 5G network. The problem of task offloading is one of the core problems in MEC. In this paper, a novel computation offloading model which partitions tasks into subtasksis proposed. This model takes communication and computing resources, energy consum...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b22be917c35648afb5661cabeaacbfa7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Multiaccess edge computation (MEC) is a hotspot in 5G network. The problem of task offloading is one of the core problems in MEC. In this paper, a novel computation offloading model which partitions tasks into subtasksis proposed. This model takes communication and computing resources, energy consumption of intelligent mobile devices, and weight of tasks into account. We then transform the model into a multiobjective optimization problem based on Pareto that balances the task weight and time efficiency of the offloaded tasks. In addition, an algorithm based on hybrid immune and bat scheduling algorithm (HIBSA) is further designed to tackle the proposed multiobjective optimization problem. The experimental results show that HIBSA can meet the requirements of both the task execution deadline and the weight of the offloaded tasks. |
---|