A novel simple risk model to predict the prognosis of patients with paraquat poisoning

Abstract To identify risk factors and develop a simple model to predict early prognosis of acute paraquat (PQ) poisoning patients, we performed a retrospective cohort study of acute PQ poisoning patients (n = 1199). Patients (n = 913) with PQ poisoning from 2011 to 2018 were randomly divided into tr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yanxia Gao, Liwen Liu, Tiegang Li, Ding Yuan, Yibo Wang, Zhigao Xu, Linlin Hou, Yan Zhang, Guoyu Duan, Changhua Sun, Lu Che, Sujuan Li, Pei Sun, Yi Li, Zhigang Ren
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b23193d9201a41959bcaf72a4ec934ca
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b23193d9201a41959bcaf72a4ec934ca
record_format dspace
spelling oai:doaj.org-article:b23193d9201a41959bcaf72a4ec934ca2021-12-02T15:12:55ZA novel simple risk model to predict the prognosis of patients with paraquat poisoning10.1038/s41598-020-80371-52045-2322https://doaj.org/article/b23193d9201a41959bcaf72a4ec934ca2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80371-5https://doaj.org/toc/2045-2322Abstract To identify risk factors and develop a simple model to predict early prognosis of acute paraquat (PQ) poisoning patients, we performed a retrospective cohort study of acute PQ poisoning patients (n = 1199). Patients (n = 913) with PQ poisoning from 2011 to 2018 were randomly divided into training (n = 609) and test (n = 304) samples. Another two independent cohorts were used as validation samples for a different time (n = 207) and site (n = 79). Risk factors were identified using a logistic model with Markov Chain Monte Carlo (MCMC) simulation and further evaluated using a latent class analysis. The prediction score was developed based on the training sample and was evaluated using the testing and validation samples. Eight factors, including age, ingestion volume, creatine kinase-MB [CK-MB], platelet [PLT], white blood cell [WBC], neutrophil counts [N], gamma-glutamyl transferase [GGT], and serum creatinine [Cr] were identified as independent risk indicators of in-hospital death events. The risk model had C statistics of 0.895 (95% CI 0.855–0.928), 0.891 (95% CI 0.848–0.932), and 0.829 (95% CI 0.455–1.000), and predictive ranges of 4.6–98.2%, 2.3–94.9%, and 0–12.5% for the test, validation_time, and validation_site samples, respectively. In the training sample, the risk model classified 18.4%, 59.9%, and 21.7% of patients into the high-, average-, and low-risk groups, with corresponding probabilities of 0.985, 0.365, and 0.03 for in-hospital death events. We developed and evaluated a simple risk model to predict the prognosis of patients with acute PQ poisoning. This risk scoring system could be helpful for identifying high-risk patients and reducing mortality due to PQ poisoning.Yanxia GaoLiwen LiuTiegang LiDing YuanYibo WangZhigao XuLinlin HouYan ZhangGuoyu DuanChanghua SunLu CheSujuan LiPei SunYi LiZhigang RenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yanxia Gao
Liwen Liu
Tiegang Li
Ding Yuan
Yibo Wang
Zhigao Xu
Linlin Hou
Yan Zhang
Guoyu Duan
Changhua Sun
Lu Che
Sujuan Li
Pei Sun
Yi Li
Zhigang Ren
A novel simple risk model to predict the prognosis of patients with paraquat poisoning
description Abstract To identify risk factors and develop a simple model to predict early prognosis of acute paraquat (PQ) poisoning patients, we performed a retrospective cohort study of acute PQ poisoning patients (n = 1199). Patients (n = 913) with PQ poisoning from 2011 to 2018 were randomly divided into training (n = 609) and test (n = 304) samples. Another two independent cohorts were used as validation samples for a different time (n = 207) and site (n = 79). Risk factors were identified using a logistic model with Markov Chain Monte Carlo (MCMC) simulation and further evaluated using a latent class analysis. The prediction score was developed based on the training sample and was evaluated using the testing and validation samples. Eight factors, including age, ingestion volume, creatine kinase-MB [CK-MB], platelet [PLT], white blood cell [WBC], neutrophil counts [N], gamma-glutamyl transferase [GGT], and serum creatinine [Cr] were identified as independent risk indicators of in-hospital death events. The risk model had C statistics of 0.895 (95% CI 0.855–0.928), 0.891 (95% CI 0.848–0.932), and 0.829 (95% CI 0.455–1.000), and predictive ranges of 4.6–98.2%, 2.3–94.9%, and 0–12.5% for the test, validation_time, and validation_site samples, respectively. In the training sample, the risk model classified 18.4%, 59.9%, and 21.7% of patients into the high-, average-, and low-risk groups, with corresponding probabilities of 0.985, 0.365, and 0.03 for in-hospital death events. We developed and evaluated a simple risk model to predict the prognosis of patients with acute PQ poisoning. This risk scoring system could be helpful for identifying high-risk patients and reducing mortality due to PQ poisoning.
format article
author Yanxia Gao
Liwen Liu
Tiegang Li
Ding Yuan
Yibo Wang
Zhigao Xu
Linlin Hou
Yan Zhang
Guoyu Duan
Changhua Sun
Lu Che
Sujuan Li
Pei Sun
Yi Li
Zhigang Ren
author_facet Yanxia Gao
Liwen Liu
Tiegang Li
Ding Yuan
Yibo Wang
Zhigao Xu
Linlin Hou
Yan Zhang
Guoyu Duan
Changhua Sun
Lu Che
Sujuan Li
Pei Sun
Yi Li
Zhigang Ren
author_sort Yanxia Gao
title A novel simple risk model to predict the prognosis of patients with paraquat poisoning
title_short A novel simple risk model to predict the prognosis of patients with paraquat poisoning
title_full A novel simple risk model to predict the prognosis of patients with paraquat poisoning
title_fullStr A novel simple risk model to predict the prognosis of patients with paraquat poisoning
title_full_unstemmed A novel simple risk model to predict the prognosis of patients with paraquat poisoning
title_sort novel simple risk model to predict the prognosis of patients with paraquat poisoning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b23193d9201a41959bcaf72a4ec934ca
work_keys_str_mv AT yanxiagao anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT liwenliu anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT tiegangli anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT dingyuan anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT yibowang anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT zhigaoxu anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT linlinhou anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT yanzhang anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT guoyuduan anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT changhuasun anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT luche anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT sujuanli anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT peisun anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT yili anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT zhigangren anovelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT yanxiagao novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT liwenliu novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT tiegangli novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT dingyuan novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT yibowang novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT zhigaoxu novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT linlinhou novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT yanzhang novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT guoyuduan novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT changhuasun novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT luche novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT sujuanli novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT peisun novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT yili novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
AT zhigangren novelsimpleriskmodeltopredicttheprognosisofpatientswithparaquatpoisoning
_version_ 1718387653013929984