Continuous Protection of a Collective State from Inhomogeneous Dephasing
We introduce and demonstrate a scheme for eliminating the inhomogeneous dephasing of a collective quantum state. The scheme employs off-resonant fields that continuously dress the collective state with an auxiliary sensor state, which has an enhanced and opposite sensitivity to the same source of in...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b240b4dfb349433b85b6b7fc6fb5576a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b240b4dfb349433b85b6b7fc6fb5576a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b240b4dfb349433b85b6b7fc6fb5576a2021-12-02T14:26:23ZContinuous Protection of a Collective State from Inhomogeneous Dephasing10.1103/PhysRevX.11.0110082160-3308https://doaj.org/article/b240b4dfb349433b85b6b7fc6fb5576a2021-01-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.011008http://doi.org/10.1103/PhysRevX.11.011008https://doaj.org/toc/2160-3308We introduce and demonstrate a scheme for eliminating the inhomogeneous dephasing of a collective quantum state. The scheme employs off-resonant fields that continuously dress the collective state with an auxiliary sensor state, which has an enhanced and opposite sensitivity to the same source of inhomogeneity. We derive the optimal conditions under which the dressed state is fully protected from dephasing when using either one or two dressing fields. The latter provides better protection, circumvents qubit phase rotation, and suppresses the sensitivity to drive noise. We further derive expressions for all residual, higher-order sensitivities. We experimentally study the scheme by protecting a collective excitation of an atomic ensemble, where inhomogeneous dephasing originates from thermal motion. Using photon storage and retrieval, we demonstrate complete suppression of inhomogeneous dephasing and, consequently, a prolonged memory time. Our scheme may be applied to eliminate motional dephasing in other systems, improving the performance of quantum gates and memories with neutral atoms. It is also generally applicable to various gas, solid, and engineered systems, where sensitivity to variations in time, space, or other domains limits possible scale-up of the system.R. FinkelsteinO. LahadI. CohenO. DavidsonS. KiriatiE. PoemO. FirstenbergAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 1, p 011008 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 R. Finkelstein O. Lahad I. Cohen O. Davidson S. Kiriati E. Poem O. Firstenberg Continuous Protection of a Collective State from Inhomogeneous Dephasing |
description |
We introduce and demonstrate a scheme for eliminating the inhomogeneous dephasing of a collective quantum state. The scheme employs off-resonant fields that continuously dress the collective state with an auxiliary sensor state, which has an enhanced and opposite sensitivity to the same source of inhomogeneity. We derive the optimal conditions under which the dressed state is fully protected from dephasing when using either one or two dressing fields. The latter provides better protection, circumvents qubit phase rotation, and suppresses the sensitivity to drive noise. We further derive expressions for all residual, higher-order sensitivities. We experimentally study the scheme by protecting a collective excitation of an atomic ensemble, where inhomogeneous dephasing originates from thermal motion. Using photon storage and retrieval, we demonstrate complete suppression of inhomogeneous dephasing and, consequently, a prolonged memory time. Our scheme may be applied to eliminate motional dephasing in other systems, improving the performance of quantum gates and memories with neutral atoms. It is also generally applicable to various gas, solid, and engineered systems, where sensitivity to variations in time, space, or other domains limits possible scale-up of the system. |
format |
article |
author |
R. Finkelstein O. Lahad I. Cohen O. Davidson S. Kiriati E. Poem O. Firstenberg |
author_facet |
R. Finkelstein O. Lahad I. Cohen O. Davidson S. Kiriati E. Poem O. Firstenberg |
author_sort |
R. Finkelstein |
title |
Continuous Protection of a Collective State from Inhomogeneous Dephasing |
title_short |
Continuous Protection of a Collective State from Inhomogeneous Dephasing |
title_full |
Continuous Protection of a Collective State from Inhomogeneous Dephasing |
title_fullStr |
Continuous Protection of a Collective State from Inhomogeneous Dephasing |
title_full_unstemmed |
Continuous Protection of a Collective State from Inhomogeneous Dephasing |
title_sort |
continuous protection of a collective state from inhomogeneous dephasing |
publisher |
American Physical Society |
publishDate |
2021 |
url |
https://doaj.org/article/b240b4dfb349433b85b6b7fc6fb5576a |
work_keys_str_mv |
AT rfinkelstein continuousprotectionofacollectivestatefrominhomogeneousdephasing AT olahad continuousprotectionofacollectivestatefrominhomogeneousdephasing AT icohen continuousprotectionofacollectivestatefrominhomogeneousdephasing AT odavidson continuousprotectionofacollectivestatefrominhomogeneousdephasing AT skiriati continuousprotectionofacollectivestatefrominhomogeneousdephasing AT epoem continuousprotectionofacollectivestatefrominhomogeneousdephasing AT ofirstenberg continuousprotectionofacollectivestatefrominhomogeneousdephasing |
_version_ |
1718391332418879488 |