Crop Type Mapping from Optical and Radar Time Series Using Attention-Based Deep Learning
Crop maps are key inputs for crop inventory production and yield estimation and can inform the implementation of effective farm management practices. Producing these maps at detailed scales requires exhaustive field surveys that can be laborious, time-consuming, and expensive to replicate. With a gr...
Guardado en:
Autores principales: | Stella Ofori-Ampofo, Charlotte Pelletier, Stefan Lang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b24982d8450a4ddfb4df3768aae07893 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Validation of Sentinel-2, MODIS, CGLS, SAF, GLASS and C3S Leaf Area Index Products in Maize Crops
por: Huinan Yu, et al.
Publicado: (2021) -
A 3D Reconstruction Framework of Buildings Using Single Off-Nadir Satellite Image
por: Chunhui Zhao, et al.
Publicado: (2021) -
Crop Rotation Modeling for Deep Learning-Based Parcel Classification from Satellite Time Series
por: Félix Quinton, et al.
Publicado: (2021) -
Relationships between the Spatio-Temporal Variation in Reflectance Data from the Sentinel-2 Satellite and Potato (<i>Solanum Tuberosum</i> L.) Yield and Stem Density
por: Joseph K. Mhango, et al.
Publicado: (2021) -
TSInsight: A Local-Global Attribution Framework for Interpretability in Time Series Data
por: Shoaib Ahmed Siddiqui, et al.
Publicado: (2021)