Advancing agricultural research using machine learning algorithms
Abstract Rising global population and climate change realities dictate that agricultural productivity must be accelerated. Results from current traditional research approaches are difficult to extrapolate to all possible fields because they are dependent on specific soil types, weather conditions, a...
Guardado en:
Autores principales: | Spyridon Mourtzinis, Paul D. Esker, James E. Specht, Shawn P. Conley |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b24c1ea5518c4a0baa41b5a535eaecac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north‐central United States
por: Denis A. Shah, et al.
Publicado: (2021) -
Machine learning algorithms to assess the thermal behavior of a Moroccan agriculture greenhouse
por: Amine Allouhi, et al.
Publicado: (2021) -
Planting method and seeding rate effect on whole and partitioned soybean yield
por: Spyros Mourtzinis, et al.
Publicado: (2021) -
Research on target feature extraction and location positioning with machine learning algorithm
por: Li Licheng
Publicado: (2020) - Advance Research in Agriculture & Veterinary Science