Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels
Abstract Einstein–Podolsky–Rosen (EPR) steering is a useful resource for secure quantum information tasks. It is crucial to investigate the effect of inevitable loss and noise in quantum channels on EPR steering. We analyze and experimentally demonstrate the influence of purity of quantum states and...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b24dec531d0f4206a7c1bcf1493101d3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b24dec531d0f4206a7c1bcf1493101d3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b24dec531d0f4206a7c1bcf1493101d32021-12-02T16:55:35ZSudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels10.1038/s41534-021-00399-x2056-6387https://doaj.org/article/b24dec531d0f4206a7c1bcf1493101d32021-04-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00399-xhttps://doaj.org/toc/2056-6387Abstract Einstein–Podolsky–Rosen (EPR) steering is a useful resource for secure quantum information tasks. It is crucial to investigate the effect of inevitable loss and noise in quantum channels on EPR steering. We analyze and experimentally demonstrate the influence of purity of quantum states and excess noise on Gaussian EPR steering by distributing a two-mode squeezed state through lossy and noisy channels, respectively. We show that the impurity of state never leads to sudden death of Gaussian EPR steering, but the noise in quantum channel can. Then we revive the disappeared Gaussian EPR steering by establishing a correlated noisy channel. Different from entanglement, the sudden death and revival of Gaussian EPR steering are directional. Our result confirms that EPR steering criteria proposed by Reid and I. Kogias et al. are equivalent in our case. The presented results pave way for asymmetric quantum information processing exploiting Gaussian EPR steering in noisy environment.Xiaowei DengYang LiuMeihong WangXiaolong SuKunchi PengNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 Xiaowei Deng Yang Liu Meihong Wang Xiaolong Su Kunchi Peng Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels |
description |
Abstract Einstein–Podolsky–Rosen (EPR) steering is a useful resource for secure quantum information tasks. It is crucial to investigate the effect of inevitable loss and noise in quantum channels on EPR steering. We analyze and experimentally demonstrate the influence of purity of quantum states and excess noise on Gaussian EPR steering by distributing a two-mode squeezed state through lossy and noisy channels, respectively. We show that the impurity of state never leads to sudden death of Gaussian EPR steering, but the noise in quantum channel can. Then we revive the disappeared Gaussian EPR steering by establishing a correlated noisy channel. Different from entanglement, the sudden death and revival of Gaussian EPR steering are directional. Our result confirms that EPR steering criteria proposed by Reid and I. Kogias et al. are equivalent in our case. The presented results pave way for asymmetric quantum information processing exploiting Gaussian EPR steering in noisy environment. |
format |
article |
author |
Xiaowei Deng Yang Liu Meihong Wang Xiaolong Su Kunchi Peng |
author_facet |
Xiaowei Deng Yang Liu Meihong Wang Xiaolong Su Kunchi Peng |
author_sort |
Xiaowei Deng |
title |
Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels |
title_short |
Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels |
title_full |
Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels |
title_fullStr |
Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels |
title_full_unstemmed |
Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels |
title_sort |
sudden death and revival of gaussian einstein–podolsky–rosen steering in noisy channels |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b24dec531d0f4206a7c1bcf1493101d3 |
work_keys_str_mv |
AT xiaoweideng suddendeathandrevivalofgaussianeinsteinpodolskyrosensteeringinnoisychannels AT yangliu suddendeathandrevivalofgaussianeinsteinpodolskyrosensteeringinnoisychannels AT meihongwang suddendeathandrevivalofgaussianeinsteinpodolskyrosensteeringinnoisychannels AT xiaolongsu suddendeathandrevivalofgaussianeinsteinpodolskyrosensteeringinnoisychannels AT kunchipeng suddendeathandrevivalofgaussianeinsteinpodolskyrosensteeringinnoisychannels |
_version_ |
1718382820632559616 |