Identifying individuals with recent COVID-19 through voice classification using deep learning
Abstract Recently deep learning has attained a breakthrough in model accuracy for the classification of images due mainly to convolutional neural networks. In the present study, we attempted to investigate the presence of subclinical voice feature alteration in COVID-19 patients after the recent res...
Guardado en:
Autores principales: | Pichatorn Suppakitjanusant, Somnuek Sungkanuparph, Thananya Wongsinin, Sirapong Virapongsiri, Nittaya Kasemkosin, Laor Chailurkit, Boonsong Ongphiphadhanakul |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b251be9ae3604d9d95be9d83337acd9a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison between blood hemoglobin concentration determined by point-of-care device and complete blood count in adult patients with dengue.
por: Kantasit Wisanuvej, et al.
Publicado: (2021) -
Classification between Elderly Voices and Young Voices Using an Efficient Combination of Deep Learning Classifiers and Various Parameters
por: Ji-Yeoun Lee
Publicado: (2021) -
Listeners form average-based representations of individual voice identities
por: Nadine Lavan, et al.
Publicado: (2019) -
Surface and deep conceptualizations of silence and voice paradoxes: An empirical analysis of women behavior at workplace
por: Asad Shahjehan, et al.
Publicado: (2016) -
Voice-selective prediction alterations in nonclinical voice hearers
por: Ana P. Pinheiro, et al.
Publicado: (2018)