Molecular marker for characterization of traditional and hybrid derivatives of Eleusine coracana (L.) using ISSR marker
Abstract Background Finger millet is the most important food grain in the world for its nutritional benefits. Finger millet is genetically and geographically diverse and widely spread in the African and Asian sub-continent. Therefore, the present study was undertaken to analyze the genetic diversity...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b2639bd491f64f4a89d55dc1188f98bb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Background Finger millet is the most important food grain in the world for its nutritional benefits. Finger millet is genetically and geographically diverse and widely spread in the African and Asian sub-continent. Therefore, the present study was undertaken to analyze the genetic diversity using ISSR genetic markers using 15 ISSR primers. Results About 23 genotypes of widely cultivated finger millet cultivars of economically important ones were characterized and the ISSR markers were critically analyzed for their performance with parameters such as polymorphic information content (PIC), effective multiplex ratio (EMR), marker index (MI), and resolving power (RP). In this study, 175 loci were scored across the 23 cultivars of finger millet, and out of these 173 loci (98%) were polymorphic, revealing the suitability of these loci for genetic diversity analysis with ISSR marker. The average number of polymorphic loci per primer was 11.50 with varying sizes from 100 bp to 2500 bp. ISSR primers that showed higher polymorphism were found to have higher EMR and MI values up to 15.30 and 13.44, respectively. Conclusion High degree of polymorphism supported with distinct differences of all the marker parameters revealed the suitability of ISSR markers for determining the genotypic differences based on ISSR markers among the 23 genotypes of finger millet. The possible application of the ISSR marker in the conservation and management of finger millet genetic resources is discussed. |
---|