Predicting intraocular pressure using systemic variables or fundus photography with deep learning in a health examination cohort
Abstract The purpose of the current study was to predict intraocular pressure (IOP) using color fundus photography with a deep learning (DL) model, or, systemic variables with a multivariate linear regression model (MLM), along with least absolute shrinkage and selection operator regression (LASSO),...
Guardado en:
Autores principales: | Kaori Ishii, Ryo Asaoka, Takashi Omoto, Shingo Mitaki, Yuri Fujino, Hiroshi Murata, Keiichi Onoda, Atsushi Nagai, Shuhei Yamaguchi, Akira Obana, Masaki Tanito |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b2680dd513714f27bb02f72b461817bc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Correlation between fundus autofluorescence and visual function in patients with cone-rod dystrophy
por: Satoru Kanda, et al.
Publicado: (2021) -
Assessment of patient specific information in the wild on fundus photography and optical coherence tomography
por: Marion R. Munk, et al.
Publicado: (2021) -
Ultrawide-field fundus photography of the first reported case of gyrate atrophy from Australia
por: Moloney TP, et al.
Publicado: (2014) -
An ensemble framework based on Deep CNNs architecture for glaucoma classification using fundus photography
por: Aziz-ur-Rehman, et al.
Publicado: (2021) -
Revision of the Cognitive Assessment for Dementia, iPad version (CADi2).
por: Keiichi Onoda, et al.
Publicado: (2014)