Learning a Transform Base for the Multi- to Hyperspectral Sensor Network with K-SVD
A promising low-cost solution for monitoring spectral information, e.g., on agricultural fields, is that of wireless sensor networks. In contrast to remote sensing, these can achieve more continuous monitoring due to their long-term deployment and are less impacted by the atmosphere, making them a p...
Guardado en:
Autores principales: | Thomas Hänel, Thomas Jarmer, Nils Aschenbruck |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b283b747ac1d4a198fde12ac970048a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reliability Analysis of Wireless Sensor Network for Smart Farming Applications
por: Marcantonio Catelani, et al.
Publicado: (2021) -
Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data
por: Paulo Eduardo Teodoro, et al.
Publicado: (2021) -
Lensless Multispectral Camera Based on a Coded Aperture Array
por: Jianwei Wang, et al.
Publicado: (2021) -
Estimating Optimal Number of Compressively Sensed Bands for Hyperspectral Classification via Feature Selection
por: C. J. Della Porta, et al.
Publicado: (2021) -
An Open-Source Wireless Sensor Node Platform with Active Node-Level Reliability for Monitoring Applications
por: Dominik Widhalm, et al.
Publicado: (2021)