Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics

Polymer dielectrics are promising for high-density energy storage but dielectric breakdown is poorly understood. Here, a phase-field model is developed to investigate electric, thermal, and mechanical effects in the breakdown process for a range of polymer dielectrics, and analytical expression for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhong-Hui Shen, Jian-Jun Wang, Jian-Yong Jiang, Sharon X. Huang, Yuan-Hua Lin, Ce-Wen Nan, Long-Qing Chen, Yang Shen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/b2841d10e9d64efca26f0c27e864440d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Polymer dielectrics are promising for high-density energy storage but dielectric breakdown is poorly understood. Here, a phase-field model is developed to investigate electric, thermal, and mechanical effects in the breakdown process for a range of polymer dielectrics, and analytical expression for breakdown strength is provided by machine learning.