Introduction of Chalcogenide Glasses to Additive Manufacturing: Nanoparticle Ink Formulation, Inkjet Printing, and Phase Change Devices Fabrication

Abstract Chalcogenide glasses are one of the most versatile materials that have been widely researched because of their flexible optical, chemical, electronic, and phase change properties. Their application is usually in the form of thin films, which work as active layers in sensors and memory devic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. Ahmed Simon, B. Badamchi, H. Subbaraman, Y. Sakaguchi, L. Jones, H. Kunold, I. J. van Rooyen, M. Mitkova
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b287130792e84f788b39c048ab2b2e73
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b287130792e84f788b39c048ab2b2e73
record_format dspace
spelling oai:doaj.org-article:b287130792e84f788b39c048ab2b2e732021-12-02T18:30:51ZIntroduction of Chalcogenide Glasses to Additive Manufacturing: Nanoparticle Ink Formulation, Inkjet Printing, and Phase Change Devices Fabrication10.1038/s41598-021-93515-y2045-2322https://doaj.org/article/b287130792e84f788b39c048ab2b2e732021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93515-yhttps://doaj.org/toc/2045-2322Abstract Chalcogenide glasses are one of the most versatile materials that have been widely researched because of their flexible optical, chemical, electronic, and phase change properties. Their application is usually in the form of thin films, which work as active layers in sensors and memory devices. In this work, we investigate the formulation of nanoparticle ink of Ge–Se chalcogenide glasses and its potential applications. The process steps reported in this work describe nanoparticle ink formulation from chalcogenide glasses, its application via inkjet printing and dip-coating methods and sintering to manufacture phase change devices. We report data regarding nanoparticle production by ball milling and ultrasonication along with the essential characteristics of the formed inks, like contact angle and viscosity. The printed chalcogenide glass films were characterized by Raman spectroscopy, X-ray diffraction, energy dispersive spectroscopy and atomic force microscopy. The printed films exhibited similar compositional, structural, electronic and optical properties as the thermally evaporated thin films. The crystallization processes of the printed films are discussed compared to those obtained by vacuum thermal deposition. We demonstrate the formation of printed thin films using nanoparticle inks, low-temperature sintering and proof for the first time, their application in electronic and photonic temperature sensors utilizing their phase change property. This work adds chalcogenide glasses to the list of inkjet printable materials, thus offering an easy way to form arbitrary device structures for optical and electronic applications.A. Ahmed SimonB. BadamchiH. SubbaramanY. SakaguchiL. JonesH. KunoldI. J. van RooyenM. MitkovaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
A. Ahmed Simon
B. Badamchi
H. Subbaraman
Y. Sakaguchi
L. Jones
H. Kunold
I. J. van Rooyen
M. Mitkova
Introduction of Chalcogenide Glasses to Additive Manufacturing: Nanoparticle Ink Formulation, Inkjet Printing, and Phase Change Devices Fabrication
description Abstract Chalcogenide glasses are one of the most versatile materials that have been widely researched because of their flexible optical, chemical, electronic, and phase change properties. Their application is usually in the form of thin films, which work as active layers in sensors and memory devices. In this work, we investigate the formulation of nanoparticle ink of Ge–Se chalcogenide glasses and its potential applications. The process steps reported in this work describe nanoparticle ink formulation from chalcogenide glasses, its application via inkjet printing and dip-coating methods and sintering to manufacture phase change devices. We report data regarding nanoparticle production by ball milling and ultrasonication along with the essential characteristics of the formed inks, like contact angle and viscosity. The printed chalcogenide glass films were characterized by Raman spectroscopy, X-ray diffraction, energy dispersive spectroscopy and atomic force microscopy. The printed films exhibited similar compositional, structural, electronic and optical properties as the thermally evaporated thin films. The crystallization processes of the printed films are discussed compared to those obtained by vacuum thermal deposition. We demonstrate the formation of printed thin films using nanoparticle inks, low-temperature sintering and proof for the first time, their application in electronic and photonic temperature sensors utilizing their phase change property. This work adds chalcogenide glasses to the list of inkjet printable materials, thus offering an easy way to form arbitrary device structures for optical and electronic applications.
format article
author A. Ahmed Simon
B. Badamchi
H. Subbaraman
Y. Sakaguchi
L. Jones
H. Kunold
I. J. van Rooyen
M. Mitkova
author_facet A. Ahmed Simon
B. Badamchi
H. Subbaraman
Y. Sakaguchi
L. Jones
H. Kunold
I. J. van Rooyen
M. Mitkova
author_sort A. Ahmed Simon
title Introduction of Chalcogenide Glasses to Additive Manufacturing: Nanoparticle Ink Formulation, Inkjet Printing, and Phase Change Devices Fabrication
title_short Introduction of Chalcogenide Glasses to Additive Manufacturing: Nanoparticle Ink Formulation, Inkjet Printing, and Phase Change Devices Fabrication
title_full Introduction of Chalcogenide Glasses to Additive Manufacturing: Nanoparticle Ink Formulation, Inkjet Printing, and Phase Change Devices Fabrication
title_fullStr Introduction of Chalcogenide Glasses to Additive Manufacturing: Nanoparticle Ink Formulation, Inkjet Printing, and Phase Change Devices Fabrication
title_full_unstemmed Introduction of Chalcogenide Glasses to Additive Manufacturing: Nanoparticle Ink Formulation, Inkjet Printing, and Phase Change Devices Fabrication
title_sort introduction of chalcogenide glasses to additive manufacturing: nanoparticle ink formulation, inkjet printing, and phase change devices fabrication
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b287130792e84f788b39c048ab2b2e73
work_keys_str_mv AT aahmedsimon introductionofchalcogenideglassestoadditivemanufacturingnanoparticleinkformulationinkjetprintingandphasechangedevicesfabrication
AT bbadamchi introductionofchalcogenideglassestoadditivemanufacturingnanoparticleinkformulationinkjetprintingandphasechangedevicesfabrication
AT hsubbaraman introductionofchalcogenideglassestoadditivemanufacturingnanoparticleinkformulationinkjetprintingandphasechangedevicesfabrication
AT ysakaguchi introductionofchalcogenideglassestoadditivemanufacturingnanoparticleinkformulationinkjetprintingandphasechangedevicesfabrication
AT ljones introductionofchalcogenideglassestoadditivemanufacturingnanoparticleinkformulationinkjetprintingandphasechangedevicesfabrication
AT hkunold introductionofchalcogenideglassestoadditivemanufacturingnanoparticleinkformulationinkjetprintingandphasechangedevicesfabrication
AT ijvanrooyen introductionofchalcogenideglassestoadditivemanufacturingnanoparticleinkformulationinkjetprintingandphasechangedevicesfabrication
AT mmitkova introductionofchalcogenideglassestoadditivemanufacturingnanoparticleinkformulationinkjetprintingandphasechangedevicesfabrication
_version_ 1718378001581735936