Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution
Deep convolutional neural networks (CNNs) are widely used to improve the performance of image restoration tasks, including single-image super-resolution (SISR). Generally, researchers are manually designing more complex and deeper CNNs to further increase the given problems’ performance....
Guardado en:
Autores principales: | Joon Young Ahn, Nam Ik Cho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b28a0da03b2a4fa6ba2137eaed595b9b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neural Architecture Search and Hardware Accelerator Co-Search: A Survey
por: Lukas Sekanina
Publicado: (2021) -
Textured Mesh Generation Using Multi-View and Multi-Source Supervision and Generative Adversarial Networks
por: Mingyun Wen, et al.
Publicado: (2021) -
Developing Language-Specific Models Using a Neural Architecture Search
por: YongSuk Yoo, et al.
Publicado: (2021) -
Light Sheet Illumination for 3D Single-Molecule Super-Resolution Imaging of Neuronal Synapses
por: Gabriella Gagliano, et al.
Publicado: (2021) -
A New Image Enhancement and Super Resolution technique for license plate recognition
por: Abdelsalam Hamdi, et al.
Publicado: (2021)