Normalizing RNA-sequencing data by modeling hidden covariates with prior knowledge.
Transcriptomic assays that measure expression levels are widely used to study the manifestation of environmental or genetic variations in cellular processes. RNA-sequencing in particular has the potential to considerably improve such understanding because of its capacity to assay the entire transcri...
Guardado en:
Autores principales: | Sara Mostafavi, Alexis Battle, Xiaowei Zhu, Alexander E Urban, Douglas Levinson, Stephen B Montgomery, Daphne Koller |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b2924a71dadf489e8607ad370e407a38 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
High-resolution transcriptome analysis with long-read RNA sequencing.
por: Hyunghoon Cho, et al.
Publicado: (2014) -
Predictions of native American population structure using linguistic covariates in a hidden regression framework.
por: Flora Jay, et al.
Publicado: (2011) -
Rescaling and Transforming
Continuous Non-Normal Data
in Covariance Structure Analysis: An Essay of Taxonomy
por: Jean-Pierre Lévy Mangin, et al.
Publicado: (2006) -
Toward an understanding of when prior knowledge helps or hinders learning
por: Garvin Brod
Publicado: (2021) -
Population codes of prior knowledge learned through environmental regularities
por: Silvan C. Quax, et al.
Publicado: (2021)