Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production

Abstract Microbial organelles are a promising model to promote cellular functions for the production of high-value chemicals. However, the concentrations of enzymes and nanoparticles are limited by the contact surface in single Escherichia coli cells. Herein, the definition of contact surface is to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qiang Ding, Yadi Liu, Guipeng Hu, Liang Guo, Cong Gao, Xiulai Chen, Wei Chen, Jian Chen, Liming Liu
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
T
Acceso en línea:https://doaj.org/article/b2ade4fe19474382b8c39d066fa2cb33
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b2ade4fe19474382b8c39d066fa2cb33
record_format dspace
spelling oai:doaj.org-article:b2ade4fe19474382b8c39d066fa2cb332021-12-05T12:03:56ZEngineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production10.1186/s40643-021-00470-72197-4365https://doaj.org/article/b2ade4fe19474382b8c39d066fa2cb332021-11-01T00:00:00Zhttps://doi.org/10.1186/s40643-021-00470-7https://doaj.org/toc/2197-4365Abstract Microbial organelles are a promising model to promote cellular functions for the production of high-value chemicals. However, the concentrations of enzymes and nanoparticles are limited by the contact surface in single Escherichia coli cells. Herein, the definition of contact surface is to improve the amylase and CdS nanoparticles concentration for enhancing the substrate starch and cofactor NADH utilization. In this study, two biofilm-based strategies were developed to improve the contact surface for the production of shikimate and L-malate. First, the contact surface of E. coli was improved by amylase self-assembly with a blue light-inducible biofilm-based SpyTag/SpyCatcher system. This system increased the glucose concentration by 20.7% and the starch-based shikimate titer to 50.96 g L−1, which showed the highest titer with starch as substrate. Then, the contact surface of E. coli was improved using a biofilm-based CdS-biohybrid system by light-driven system, which improved the NADH concentration by 83.3% and increased the NADH-dependent L-malate titer to 45.93 g L−1. Thus, the biofilm-based strategies can regulate cellular functions to increase the efficiency of microbial cell factories based on the optogenetics, light-driven, and metabolic engineering. Graphical AbstractQiang DingYadi LiuGuipeng HuLiang GuoCong GaoXiulai ChenWei ChenJian ChenLiming LiuSpringerOpenarticleBiofilmContact surfaceSelf-assemblyBiohybridShikimateL-malateTechnologyTChemical technologyTP1-1185BiotechnologyTP248.13-248.65ENBioresources and Bioprocessing, Vol 8, Iss 1, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biofilm
Contact surface
Self-assembly
Biohybrid
Shikimate
L-malate
Technology
T
Chemical technology
TP1-1185
Biotechnology
TP248.13-248.65
spellingShingle Biofilm
Contact surface
Self-assembly
Biohybrid
Shikimate
L-malate
Technology
T
Chemical technology
TP1-1185
Biotechnology
TP248.13-248.65
Qiang Ding
Yadi Liu
Guipeng Hu
Liang Guo
Cong Gao
Xiulai Chen
Wei Chen
Jian Chen
Liming Liu
Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production
description Abstract Microbial organelles are a promising model to promote cellular functions for the production of high-value chemicals. However, the concentrations of enzymes and nanoparticles are limited by the contact surface in single Escherichia coli cells. Herein, the definition of contact surface is to improve the amylase and CdS nanoparticles concentration for enhancing the substrate starch and cofactor NADH utilization. In this study, two biofilm-based strategies were developed to improve the contact surface for the production of shikimate and L-malate. First, the contact surface of E. coli was improved by amylase self-assembly with a blue light-inducible biofilm-based SpyTag/SpyCatcher system. This system increased the glucose concentration by 20.7% and the starch-based shikimate titer to 50.96 g L−1, which showed the highest titer with starch as substrate. Then, the contact surface of E. coli was improved using a biofilm-based CdS-biohybrid system by light-driven system, which improved the NADH concentration by 83.3% and increased the NADH-dependent L-malate titer to 45.93 g L−1. Thus, the biofilm-based strategies can regulate cellular functions to increase the efficiency of microbial cell factories based on the optogenetics, light-driven, and metabolic engineering. Graphical Abstract
format article
author Qiang Ding
Yadi Liu
Guipeng Hu
Liang Guo
Cong Gao
Xiulai Chen
Wei Chen
Jian Chen
Liming Liu
author_facet Qiang Ding
Yadi Liu
Guipeng Hu
Liang Guo
Cong Gao
Xiulai Chen
Wei Chen
Jian Chen
Liming Liu
author_sort Qiang Ding
title Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production
title_short Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production
title_full Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production
title_fullStr Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production
title_full_unstemmed Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production
title_sort engineering escherichia coli biofilm to increase contact surface for shikimate and l-malate production
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/b2ade4fe19474382b8c39d066fa2cb33
work_keys_str_mv AT qiangding engineeringescherichiacolibiofilmtoincreasecontactsurfaceforshikimateandlmalateproduction
AT yadiliu engineeringescherichiacolibiofilmtoincreasecontactsurfaceforshikimateandlmalateproduction
AT guipenghu engineeringescherichiacolibiofilmtoincreasecontactsurfaceforshikimateandlmalateproduction
AT liangguo engineeringescherichiacolibiofilmtoincreasecontactsurfaceforshikimateandlmalateproduction
AT conggao engineeringescherichiacolibiofilmtoincreasecontactsurfaceforshikimateandlmalateproduction
AT xiulaichen engineeringescherichiacolibiofilmtoincreasecontactsurfaceforshikimateandlmalateproduction
AT weichen engineeringescherichiacolibiofilmtoincreasecontactsurfaceforshikimateandlmalateproduction
AT jianchen engineeringescherichiacolibiofilmtoincreasecontactsurfaceforshikimateandlmalateproduction
AT limingliu engineeringescherichiacolibiofilmtoincreasecontactsurfaceforshikimateandlmalateproduction
_version_ 1718372278361653248