Softening Effects in Biological Tissues and NiTi Knitwear during Cyclic Loading
Samples of skin, tendons, muscles, and knitwear composed of NiTi wire are studied by uniaxial cyclic tension and stretching to rupture. The metal knitted mesh behaves similar to a superelastic material when stretched, similar to soft biological tissues. The superelasticity effect was found in NiTi w...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b2b44ad20e164ab0a87f03ee598c2cf0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Samples of skin, tendons, muscles, and knitwear composed of NiTi wire are studied by uniaxial cyclic tension and stretching to rupture. The metal knitted mesh behaves similar to a superelastic material when stretched, similar to soft biological tissues. The superelasticity effect was found in NiTi wire, but not in the mesh composed of it. A softening effect similar to biological tissues is observed during the cyclic stretching of the mesh. The mechanical behavior of the NiTi mesh is similar to the biomechanical behavior of biological tissues. The discovered superelastic effects allow developing criteria for the selection and evaluation of mesh materials composed of titanium nickelide for soft tissue reconstructive surgery. |
---|