Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1
We present new speed records on the Armv8-A architecture for the latticebased schemes Dilithium, Kyber, and Saber. The core novelty in this paper is the combination of Montgomery multiplication and Barrett reduction resulting in “Barrett multiplication” which allows particularly efficient modular o...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Ruhr-Universität Bochum
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b2b6a32b59d74cc29aa0ddce37e21ace |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b2b6a32b59d74cc29aa0ddce37e21ace |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b2b6a32b59d74cc29aa0ddce37e21ace2021-11-19T14:36:12ZNeon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M110.46586/tches.v2022.i1.221-2442569-2925https://doaj.org/article/b2b6a32b59d74cc29aa0ddce37e21ace2021-11-01T00:00:00Zhttps://tches.iacr.org/index.php/TCHES/article/view/9295https://doaj.org/toc/2569-2925 We present new speed records on the Armv8-A architecture for the latticebased schemes Dilithium, Kyber, and Saber. The core novelty in this paper is the combination of Montgomery multiplication and Barrett reduction resulting in “Barrett multiplication” which allows particularly efficient modular one-known-factor multiplication using the Armv8-A Neon vector instructions. These novel techniques combined with fast two-unknown-factor Montgomery multiplication, Barrett reduction sequences, and interleaved multi-stage butterflies result in significantly faster code. We also introduce “asymmetric multiplication” which is an improved technique for caching the results of the incomplete NTT, used e.g. for matrix-to-vector polynomial multiplication. Our implementations target the Arm Cortex-A72 CPU, on which our speed is 1.7× that of the state-of-the-art matrix-to-vector polynomial multiplication in kyber768 [Nguyen–Gaj 2021]. For Saber, NTTs are far superior to Toom–Cook multiplication on the Armv8-A architecture, outrunning the matrix-to-vector polynomial multiplication by 2.0×. On the Apple M1, our matrix-vector products run 2.1× and 1.9× faster for Kyber and Saber respectively. Hanno BeckerVincent HwangMatthias J. KannwischerBo-Yin YangShang-Yi YangRuhr-Universität BochumarticleNIST PQCArmv8-ANeonDilithiumKyberSaberComputer engineering. Computer hardwareTK7885-7895Information technologyT58.5-58.64ENTransactions on Cryptographic Hardware and Embedded Systems, Vol 2022, Iss 1 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
NIST PQC Armv8-A Neon Dilithium Kyber Saber Computer engineering. Computer hardware TK7885-7895 Information technology T58.5-58.64 |
spellingShingle |
NIST PQC Armv8-A Neon Dilithium Kyber Saber Computer engineering. Computer hardware TK7885-7895 Information technology T58.5-58.64 Hanno Becker Vincent Hwang Matthias J. Kannwischer Bo-Yin Yang Shang-Yi Yang Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1 |
description |
We present new speed records on the Armv8-A architecture for the latticebased schemes Dilithium, Kyber, and Saber. The core novelty in this paper is the combination of Montgomery multiplication and Barrett reduction resulting in “Barrett multiplication” which allows particularly efficient modular one-known-factor multiplication using the Armv8-A Neon vector instructions. These novel techniques combined with fast two-unknown-factor Montgomery multiplication, Barrett reduction sequences, and interleaved multi-stage butterflies result in significantly faster code. We also introduce “asymmetric multiplication” which is an improved technique for caching the results of the incomplete NTT, used e.g. for matrix-to-vector polynomial multiplication. Our implementations target the Arm Cortex-A72 CPU, on which our speed is 1.7× that of the state-of-the-art matrix-to-vector polynomial multiplication in kyber768 [Nguyen–Gaj 2021]. For Saber, NTTs are far superior to Toom–Cook multiplication on the Armv8-A architecture, outrunning the matrix-to-vector polynomial multiplication by 2.0×. On the Apple M1, our matrix-vector products run 2.1× and 1.9× faster for Kyber and Saber respectively.
|
format |
article |
author |
Hanno Becker Vincent Hwang Matthias J. Kannwischer Bo-Yin Yang Shang-Yi Yang |
author_facet |
Hanno Becker Vincent Hwang Matthias J. Kannwischer Bo-Yin Yang Shang-Yi Yang |
author_sort |
Hanno Becker |
title |
Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1 |
title_short |
Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1 |
title_full |
Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1 |
title_fullStr |
Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1 |
title_full_unstemmed |
Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1 |
title_sort |
neon ntt: faster dilithium, kyber, and saber on cortex-a72 and apple m1 |
publisher |
Ruhr-Universität Bochum |
publishDate |
2021 |
url |
https://doaj.org/article/b2b6a32b59d74cc29aa0ddce37e21ace |
work_keys_str_mv |
AT hannobecker neonnttfasterdilithiumkyberandsaberoncortexa72andapplem1 AT vincenthwang neonnttfasterdilithiumkyberandsaberoncortexa72andapplem1 AT matthiasjkannwischer neonnttfasterdilithiumkyberandsaberoncortexa72andapplem1 AT boyinyang neonnttfasterdilithiumkyberandsaberoncortexa72andapplem1 AT shangyiyang neonnttfasterdilithiumkyberandsaberoncortexa72andapplem1 |
_version_ |
1718420090914865152 |