Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks

Rapid and accurate hazard prediction is important for prompt evacuation and casualty reduction during natural disasters. Here, the authors present an AI-enabled tsunami forecasting approach, which provided rapid and accurate early warnings.

Guardado en:
Detalles Bibliográficos
Autores principales: Fumiyasu Makinoshima, Yusuke Oishi, Takashi Yamazaki, Takashi Furumura, Fumihiko Imamura
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/b2dbf73069984e17b4e1bde9bf7038c0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b2dbf73069984e17b4e1bde9bf7038c0
record_format dspace
spelling oai:doaj.org-article:b2dbf73069984e17b4e1bde9bf7038c02021-12-02T14:30:27ZEarly forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks10.1038/s41467-021-22348-02041-1723https://doaj.org/article/b2dbf73069984e17b4e1bde9bf7038c02021-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22348-0https://doaj.org/toc/2041-1723Rapid and accurate hazard prediction is important for prompt evacuation and casualty reduction during natural disasters. Here, the authors present an AI-enabled tsunami forecasting approach, which provided rapid and accurate early warnings.Fumiyasu MakinoshimaYusuke OishiTakashi YamazakiTakashi FurumuraFumihiko ImamuraNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Fumiyasu Makinoshima
Yusuke Oishi
Takashi Yamazaki
Takashi Furumura
Fumihiko Imamura
Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks
description Rapid and accurate hazard prediction is important for prompt evacuation and casualty reduction during natural disasters. Here, the authors present an AI-enabled tsunami forecasting approach, which provided rapid and accurate early warnings.
format article
author Fumiyasu Makinoshima
Yusuke Oishi
Takashi Yamazaki
Takashi Furumura
Fumihiko Imamura
author_facet Fumiyasu Makinoshima
Yusuke Oishi
Takashi Yamazaki
Takashi Furumura
Fumihiko Imamura
author_sort Fumiyasu Makinoshima
title Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks
title_short Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks
title_full Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks
title_fullStr Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks
title_full_unstemmed Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks
title_sort early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b2dbf73069984e17b4e1bde9bf7038c0
work_keys_str_mv AT fumiyasumakinoshima earlyforecastingoftsunamiinundationfromtsunamiandgeodeticobservationdatawithconvolutionalneuralnetworks
AT yusukeoishi earlyforecastingoftsunamiinundationfromtsunamiandgeodeticobservationdatawithconvolutionalneuralnetworks
AT takashiyamazaki earlyforecastingoftsunamiinundationfromtsunamiandgeodeticobservationdatawithconvolutionalneuralnetworks
AT takashifurumura earlyforecastingoftsunamiinundationfromtsunamiandgeodeticobservationdatawithconvolutionalneuralnetworks
AT fumihikoimamura earlyforecastingoftsunamiinundationfromtsunamiandgeodeticobservationdatawithconvolutionalneuralnetworks
_version_ 1718391214204518400