Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks
Rapid and accurate hazard prediction is important for prompt evacuation and casualty reduction during natural disasters. Here, the authors present an AI-enabled tsunami forecasting approach, which provided rapid and accurate early warnings.
Enregistré dans:
Auteurs principaux: | Fumiyasu Makinoshima, Yusuke Oishi, Takashi Yamazaki, Takashi Furumura, Fumihiko Imamura |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b2dbf73069984e17b4e1bde9bf7038c0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Probabilistic tsunami forecasting for early warning
par: J. Selva, et autres
Publié: (2021) -
Tsunami Squares: Earthquake driven inundation mapping and validation by comparison to the Regional Ocean Modeling System
par: David P. Grzan, et autres
Publié: (2021) -
Reflections on the Tsunami
par: Imam Zaid Shakir
Publié: (2005) - Journal of earthquake and tsunami
-
Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami
par: Charles M. Rubin, et autres
Publié: (2017)