Linear unmixing protocol for hyperspectral image fusion analysis applied to a case study of vegetal tissues
Abstract Hyperspectral imaging (HSI) is a useful non-invasive technique that offers spatial and chemical information of samples. Often, different HSI techniques are used to obtain complementary information from the sample by combining different image modalities (Image Fusion). However, issues relate...
Guardado en:
Autores principales: | Adrián Gómez-Sánchez, Mónica Marro, Maria Marsal, Sara Zacchetti, Rodrigo Rocha de Oliveira, Pablo Loza-Alvarez, Anna de Juan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b2dc5839ffeb4ad7b15619402b09013c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
por: Lulu Wan, et al.
Publicado: (2021) -
Constrained Nonnegative Matrix Factorization for Blind Hyperspectral Unmixing Incorporating Endmember Independence
por: E. M. M. B. Ekanayake, et al.
Publicado: (2021) -
Low-Rank and Spectral-Spatial Sparse Unmixing for Hyperspectral Remote Sensing Imagery
por: Fan Li
Publicado: (2021) -
Coupling linear spectral unmixing and RUSLE2 to model soil erosion in the Boubo coastal watershed, Côte d'Ivoire
por: Lenikpoho Karim Coulibaly, et al.
Publicado: (2021) -
Blind Fusion of Hyperspectral Multispectral Images Based on Matrix Factorization
por: Jian Long, et al.
Publicado: (2021)