Using Decision Trees and Random Forest Algorithms to Predict and Determine Factors Contributing to First-Year University Students’ Learning Performance
First-year students’ learning performance has received much attention in educational practice and theory. Previous works used some variables, which should be obtained during the course or in the progress of the semester through questionnaire surveys and interviews, to build prediction models. These...
Guardado en:
Autores principales: | Thao-Trang Huynh-Cam, Long-Sheng Chen, Huynh Le |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b2e7c55f69b846f0ad6e1ec1a64bc336 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Path Planning of a Mechanical Arm Based on an Improved Artificial Potential Field and a Rapid Expansion Random Tree Hybrid Algorithm
por: Qingni Yuan, et al.
Publicado: (2021) -
Feature Selection for High-Dimensional Datasets through a Novel Artificial Bee Colony Framework
por: Yuanzi Zhang, et al.
Publicado: (2021) -
A Parallel Algorithm for Dividing Octonions
por: Aleksandr Cariow, et al.
Publicado: (2021) -
Algorithms
Publicado: (2008) -
Decomposition of Random Sequences into Mixtures of Simpler Ones and Its Application in Network Analysis
por: András Faragó
Publicado: (2021)